Coiled-coil motifs provide simple systems for studying molecular self-assembly. We designed two 28-residue peptides to assemble into an extended coiled-coil fiber. Complementary interactions in the core and flanking ion-pairs were used to direct staggered heterodimers. These had "sticky-ends" to promote the formation of long fibers. For comparison, we also synthesized a permuted version of one peptide to associate with the other peptide and form canonical heterodimers with "blunt-ends" that could not associate longitudinally. The assembly of both pairs was monitored in solution using circular dichroism spectroscopy. In each case, mixing the peptides led to increased and concentration-dependent circular dichroism signals at 222 nm, consistent with the desired alpha-helical structures. For the designed fiber-producing peptide mixture, we also observed a linear dichroism effect during flow orientation, indicative of the presence of long fibrous structures. X-ray fiber diffraction of partially aligned samples gave patterns indicative of coiled-coil structure. Furthermore, we used electron microscopy to visualize fiber formation directly. Interestingly, the fibers observed were at least several hundred micrometers long and 20 times thicker than expected for the dimeric coiled-coil design. This additional thickness implied lateral association of the designed structures. We propose that complementary features present in repeating structures of the type we describe promote lateral assembly, and that a similar mechanism may underlie fibrillogenesis in certain natural systems.
A conserved asparagine (Asn 16) buried in the interface of the GCN4 leucine zipper selectively favours the parallel, dimeric, coiled-coil structure. To test if other polar residues confer oligomerization specificity, the structural effects of Gln and Lys substitutions for Asn 16 were characterized. Like the wild-type peptide, the Asn 16Lys mutant formed exclusively dimers. In contrast, Gln 16, despite its chemical similarity to Asn, allowed the peptide to form both dimers and trimers. The Gln 16 side chain was accommodated by qualitatively different interactions in the dimer and trimer crystal structures. These findings demonstrate that the structural selectivity of polar residues results not only from the burial of polar atoms, but also depends on the complementarity of the side-chain stereochemistry with the surrounding structural environment.
In vivo activation of client proteins by Hsp90 depends on its ATPase-coupled conformational cycle and on interaction with a variety of co-chaperone proteins. For some client proteins the co-chaperone Sti1/Hop/p60 acts as a "scaffold," recruiting Hsp70 and the bound client to Hsp90 early in the cycle and suppressing ATP turnover by Hsp90 during the loading phase. Recruitment of protein kinase clients to the Hsp90 complex appears to involve a specialized co-chaperone, Cdc37p/p50 cdc37 , whose binding to Hsp90 is mutually exclusive of Sti1/ Hop/p60. We now show that Cdc37p/p50 cdc37 , like Sti1/ Hop/p60, also suppresses ATP turnover by Hsp90 supporting the idea that client protein loading to Hsp90 requires a "relaxed" ADP-bound conformation. Like Sti1/Hop/p60, Cdc37p/p50 cdc37 binds to Hsp90 as a dimer, and the suppressed ATPase activity of Hsp90 is restored when Cdc37p/p50 cdc37 is displaced by the immunophilin co-chaperone Cpr6/Cyp40. However, unlike Sti1/Hop/ p60, which can displace geldanamycin upon binding to Hsp90, Cdc37p/p50 cdc37 forms a stable complex with geldanamycin-bound Hsp90 and may be sequestered in geldanamycin-inhibited Hsp90 complexes in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.