Notes on 113 fungal taxa are compiled in this paper, including 11 new genera, 89 new species, one new subspecies, three new combinations and xx reference specimens. A wide geographic and taxonomic range of fungal taxa are detailed. In the Ascomycota the new genera Angustospora (Testudinaceae), Camporesia (Xylariaceae), Clematidis, Crassiparies (Pleosporales genera incertae sedis), Farasanispora, Longiostiolum (Pleosporales genera incertae sedis), Multilocularia (Parabambusicolaceae), Neophaeocryptopus (Dothideaceae), Parameliola (Pleosporales genera incertae sedis), and Towyspora (Lentitheciaceae) are introduced. Newly introduced species are Angustospora nilensis, Aniptodera
A multigene phylogeny was constructed, including a significant number of representative species of the main lineages in the Xylariaceae and four DNA loci the internal transcribed spacer region (ITS), the large subunit (LSU) of the nuclear rDNA, the second largest subunit of the RNA polymerase II (RPB2), and beta-tubulin (TUB2). Specimens were selected based on more than a decade of intensive morphological and chemotaxonomic work, and cautious taxon sampling was performed to cover the major lineages of the Xylariaceae; however, with emphasis on hypoxyloid species. The comprehensive phylogenetic analysis revealed a clear-cut segregation of the Xylariaceae into several major clades, which was well in accordance with previously established morphological and chemotaxonomic concepts. One of these clades contained Annulohypoxylon, Hypoxylon, Daldinia, and other related genera that have stromatal pigments and a nodulisporium-like anamorph. They are accommodated in the family Hypoxylaceae, which is resurrected and emended. Representatives of genera with a nodulisporium-like anamorph and bipartite stromata, lacking stromatal pigments (i.e. Biscogniauxia, Camillea, and Obolarina) appeared in a clade basal to the xylarioid taxa. As they clustered with Graphostroma platystomum, they are accommodated in the Graphostromataceae. The new genus Jackrogersella with J. multiformis as type species is segregated from Annulohypoxylon. The genus Pyrenopolyporus is resurrected for Hypoxylon polyporus and allied species. The genus Daldinia and its allies Entonaema, Rhopalostroma, Ruwenzoria, and Thamnomyces appeared in two separate subclades, which may warrant further splitting of Daldinia in the future, and even Hypoxylon was divided in several clades. However, more species of these genera need to be studied before a conclusive taxonomic rearrangement can be envisaged. Epitypes were designated for several important species in which living cultures and molecular data are available, in order to stabilise the taxonomy of the Xylariales.
For a monograph based on a polythetic concept, several thousands of herbarium specimens, and several hundreds of freshly collected and cultured specimens of Daldinia and allied Xylariaceae, originating from around the world, were studied for morphological traits, including by SEM, and chemically by HPLC profiles using UV-visible and mass spectrometric detection. Emphasis was given to tropical material, and importantly, ancient specimens, including as many types as possible, were tracked and studied to review earlier taxonomic concepts. An epitype of D. eschscholtzii was selected as representative of the morphochemotype that is most widely distributed in the tropics. Six new species of Daldinia from the tropics and the southern Hemisphere are described. Daldinia asphalatum is resurrected, and D. cudonia is regarded as its synonym. In addition, the following binomials are epi-, iso-, neo- and/or lectotypified: Daldinia asphalatum, D. caldariorum, D. clavata, D. cuprea, D. durissima, D. eschscholtzii, D. grandis, D. loculata, and D. vernicosa. Annellosporium and Versiomyces are regarded as synonyms of Daldinia. Many new synonymies in Daldinia are proposed, and some previously published names are rejected. In total, 47 taxa in Daldinia are recognised and a key is provided. Their biogeography, chorology, and ecology, as well as the importance of their secondary metabolites, are also discussed. The previous definition of the genus is emended. The species concept is based mainly on morphological and other phenotype-derived characters because, despite diligent search, no molecular data or cultures of several of the accepted species could be obtained. Daldinia is segregated into five major groups, based on phenotypic characteristics. Some unnamed but aberrant specimens were not found in good condition and are therefore not formally described as new species. However, they are illustrated in detail in a hope that this will facilitate the discovery of fresh material in future. A preliminary molecular phylogeny based on 5.8S/ITS nrDNA including numerous representatives of all hitherto described taxa for which cultures are extant, was found basically in agreement with the above mentioned segregation of the genus, based on morphological and chemotaxonomic evidence. In the rDNA based phylogenetic tree, Daldinia appears clearly distinct from members of the genera Annulohypoxylon and Hypoxylon; nevertheless, representatives of small genera of predominantly tropical origin (Entonaema, Phylacia, Ruwenzoria, Rhopalostroma, Thamnomyces) appear to have evolved from daldinioid ancestors and are nested inside the Daldinia clade. Interestingly, these findings correlate with chemotaxonomic characters to a great extent, especially regarding the distribution of marker metabolites in their mycelial cultures. Hence, the current study revealed for the first time that fungal secondary metabolite profiles can have taxonomic value beyond the species rank and even coincide with phylogenetic data.Taxonomic novelties:Daldinia andina sp. nov., D. aust...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.