This is the first study to suggest that a relatively brief, single exposure to blue light has a subsequent beneficial effect on working memory performance, even after cessation of exposure, and leads to temporarily persisting functional brain changes within prefrontal brain regions associated with executive functions. These findings may have broader implication for using blue-enriched light in a variety of work settings where alertness and quick decision-making are important.
Posttraumatic stress disorder (PTSD) develops in a substantial minority of emergency room admits. Inexpensive and accurate person-level assessment of PTSD risk after trauma exposure is a critical precursor to large-scale deployment of early interventions that may reduce individual suffering and societal costs. Toward this aim, we applied ensemble machine learning to predict PTSD screening status three months after severe injury using cost-effective and minimally invasive data. Participants (N = 271) were recruited at a Level 1 Trauma Center where they provided variables routinely collected at the hospital, including pulse, injury severity, and demographics, as well as psychological variables, including self-reported current depression, psychiatric history, and social support. Participant zip codes were used to extract contextual variables including population total and density, average annual income, and health insurance coverage rates from publicly available U.S. Census data. Machine learning yielded good prediction of PTSD screening status 3 months post-hospitalization, AUC = 0.85 95% CI [0.83, 0.86], and significantly outperformed all benchmark comparison models in a cross-validation procedure designed to yield an unbiased estimate of performance. These results demonstrate that good prediction can be attained from variables that individually have relatively weak predictive value, pointing to the promise of ensemble machine learning approaches that do not rely on strong isolated risk factors.
BackgroundSome Internet interventions are regarded as effective treatments for adult depression, but less is known about who responds to this form of treatment.MethodAn elastic net and random forest were trained to predict depression symptoms and related disability after an 8-week course of an Internet intervention, Deprexis, involving adults (N = 283) from across the USA. Candidate predictors included psychopathology, demographics, treatment expectancies, treatment usage, and environmental context obtained from population databases. Model performance was evaluated using predictive R2 $\lpar R_{{\rm pred}}^2\rpar\comma $ the expected variance explained in a new sample, estimated by 10 repetitions of 10-fold cross-validation.ResultsAn ensemble model was created by averaging the predictions of the elastic net and random forest. Model performance was compared with a benchmark linear autoregressive model that predicted each outcome using only its baseline. The ensemble predicted more variance in post-treatment depression (8.0% gain, 95% CI 0.8–15; total $R_{{\rm pred}}^2 \; $= 0.25), disability (5.0% gain, 95% CI −0.3 to 10; total $R_{{\rm pred}}^2 \; $= 0.25), and well-being (11.6% gain, 95% CI 4.9–19; total $R_{{\rm pred}}^2 \; $= 0.29) than the benchmark model. Important predictors included comorbid psychopathology, particularly total psychopathology and dysthymia, low symptom-related disability, treatment credibility, lower access to therapists, and time spent using certain Deprexis modules.ConclusionA number of variables predict symptom improvement following an Internet intervention, but each of these variables makes relatively small contributions. Machine learning ensembles may be a promising statistical approach for identifying the cumulative contribution of many weak predictors to psychosocial depression treatment response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.