Histopathology diagnosis is based on visual examination of the morphology of histological sections under a microscope. With the increasing popularity of digital slide scanners, decision support systems based on the analysis of digital pathology images are in high demand. However, computerized decision support systems are fraught with problems that stem from color variations in tissue appearance due to variation in tissue preparation, variation in stain reactivity from different manufacturers/batches, user or protocol variation, and the use of scanners from different manufacturers. In this paper, we present a novel approach to stain normalization in histopathology images. The method is based on nonlinear mapping of a source image to a target image using a representation derived from color deconvolution. Color deconvolution is a method to obtain stain concentration values when the stain matrix, describing how the color is affected by the stain concentration, is given. Rather than relying on standard stain matrices, which may be inappropriate for a given image, we propose the use of a color-based classifier that incorporates a novel stain color descriptor to calculate image-specific stain matrix. In order to demonstrate the efficacy of the proposed stain matrix estimation and stain normalization methods, they are applied to the problem of tumor segmentation in breast histopathology images. The experimental results suggest that the paradigm of color normalization, as a preprocessing step, can significantly help histological image analysis algorithms to demonstrate stable performance which is insensitive to imaging conditions in general and scanner variations in particular.
Three-dimensional (3D) reconstruction and examination of tissue at microscopic resolution have significant potential to enhance the study of both normal and disease processes, particularly those involving structural changes or those in which the spatial relationship of disease features is important. Although other methods exist for studying tissue in 3D, using conventional histopathological features has significant advantages because it allows for conventional histopathological staining and interpretation techniques. Until now, its use has not been routine in research because of the technical difficulty in constructing 3D tissue models. We describe a novel system for 3D histological reconstruction, integrating whole-slide imaging (virtual slides), image serving, registration, and visualization into one user-friendly package. It produces high-resolution 3D reconstructions with minimal user interaction and can be used in a histopathological laboratory without input from computing specialists. It uses a novel method for slice-to-slice image registration using automatic registration algorithms custom designed for both virtual slides and histopathological images. This system has been applied to >300 separate 3D volumes from eight different tissue types, using a total of 5500 virtual slides comprising 1.45 TB of primary image data. Qualitative and quantitative metrics for the accuracy of 3D reconstruction are provided, with measured registration accuracy approaching 120 μm for a 1-cm piece of tissue. Both 3D tissue volumes and generated 3D models are presented for four demonstrator cases.
The problem of automatically recognising and fitting hyperbolae from Ground Penetrating Radar (GPR) images is addressed, and a novel technique computationally suitable for real time on-site application is proposed. After pre-processing of the input GPR images, a novel thresholding method is applied to separate the regions of interest from background. A novel columnconnection clustering (C3) algorithm is then applied to separate the regions of interest from each other. Subsequently, a machine learnt model is applied to identify hyperbolic signatures from outputs of the C3 algorithm and a hyperbola is fitted to each such signature with an orthogonal distance hyperbola fitting algorithm. The novel clustering algorithm C3 is a central component of the proposed system, which enables the identification of hyperbolic signatures and hyperbola fitting. Only two features are used in the machine learning algorithm, which is easy to train using a small set of training data. An orthogonal distance hyperbola fitting algorithm for 'southopening' hyperbolae is introduced in this work, which is more robust and accurate than algebraic hyperbola fitting algorithms. The proposed method can successfully recognise and fit hyperbolic signatures with intersections with others, hyperbolic signatures with distortions and incomplete hyperbolic signatures with one leg fully or largely missed. As an additional novel contribution, formulae to compute an initial 'south-opening' hyperbola directly from a set of given points are derived, which make the system more efficient. The parameters obtained by fitting hyperbolae to hyperbolic signatures are very important features, they can be used to estimate the location, size of the related target objects, and the average propagation velocity of the electromagnetic wave in the medium. The effectiveness of the proposed system is tested on both synthetic and real GPR data.
We propose a personalized ConvNet pose estimator that automatically adapts itself to the uniqueness of a person's appearance to improve pose estimation in long videos.We make the following contributions: (i) we show that given a few high-precision pose annotations, e.g. from a generic ConvNet pose estimator, additional annotations can be generated throughout the video using a combination of image-based matching for temporally distant frames, and dense optical flow for temporally local frames; (ii) we develop an occlusion aware self-evaluation model that is able to automatically select the high-quality and reject the erroneous additional annotations; and (iii) we demonstrate that these high-quality annotations can be used to fine-tune a ConvNet pose estimator and thereby personalize it to lock on to key discriminative features of the person's appearance. The outcome is a substantial improvement in the pose estimates for the target video using the personalized ConvNet compared to the original generic ConvNet.Our method outperforms the state of the art (including top ConvNet methods) by a large margin on three standard benchmarks, as well as on a new challenging YouTube video dataset. Furthermore, we show that training from the automatically generated annotations can be used to improve the performance of a generic ConvNet on other benchmarks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.