Context. This case series discusses surgical management of esophageal perforations that occurred following cervical spine hardware placement. Purpose. (1) Determine presenting symptoms of esophageal perforation after anterior cervical spine hardware placement. (2) Discuss surgical management of these resulting esophageal perforation complications. Design/Setting. Case series of six patients at a tertiary-care, academic medical center. Patient Sample. Six patients with pharyngoesophageal perforations following anterior cervical spine surgery (ACSS). Outcome Measures. Date of ACSS, indication for ACSS, level of hardware, location of esophageal or pharyngeal injury, symptoms at presentation, surgical intervention, type of reconstruction flap, wound culture flora, and antibiotic choice. Methods. A retrospective review of patients with an esophageal or hypopharyngeal injury in the setting of prior ACSS managed by the otolaryngology service at a tertiary, academic center between January 2015 and January 2019. Results. Six patients who experienced pharyngoesophageal perforation following ACSS are included in this study. Range of presentation was two weeks to eight years following initial hardware placement. Five patients presented with an abscess and all had evidence of perforation on initial CT or esophagram. All patients underwent repair with a sternocleidomastoid flap with two patients eventually requiring an additional pectoralis myofascial flap for a persistent esophageal leak. Five patients eventually attained ability to tolerate oral nutrition. An algorithm detailing surgical reconstructive management is proposed. Conclusions. Esophageal perforations in the setting of prior ACSS are challenging clinical problems faced by otolaryngologists. Consideration should be given to early drainage of abscesses and spine surgery evaluation. Spinal hardware removal is recommended whenever possible. Utilization of a pedicled muscle flap reinforces primary closure and allows coverage of the vertebral bony defect. Nutrition, thyroid repletion, and culture-directed IV antibiotics are necessary to optimize esophageal perforation repair.
Aims: There is currently no standardized method of characterizing changes in bladder sensation during bladder filling outside of the urodynamics laboratory. The purpose of this investigation was to characterize real-time bladder sensation events using a sensation meter during oral hydration in individuals with normal bladder function. Methods: Participants enrolled in an accelerated hydration study drank 2 L Gatorade-G2® and utilized a sensation meter to record real-time bladder sensation (0–100%), verbal sensory thresholds, and sensation descriptors of “tense,” “pressure,” “tingling,” “painful,” and “other” for two consecutive fill-void cycles. Results: Data from 21 participants (12 females/9 males) were obtained and demonstrated an average of 8–9 sensation events (significant changes in sensation) per fill with no differences in the total number of sensation events and volume between sensation events (fill 1 vs fill 2). An increased number of sensation events occurred at higher capacity quartiles. Event descriptors of “pressure” and “tingling” were the most commonly chosen descriptors in both fills. Conclusions: The innovative sensation meter includes the sensation event descriptors of “tense,” “tingling,” “pressure,” and “painful,” to enable a more comprehensive understanding of bladder sensation as well as real-time identification, quantification, and characterization of sensation events. The study demonstrates 8–9 events per fill, acceleration of sensation during filling, and unique sensation event descriptor patterns. This technology may be helpful in the identification of novel sensation patterns associated with overactive bladder (OAB) and aging.
Objectives A non‐invasive protocol was previously developed using three‐dimensional ultrasound and a sensation meter to characterize real‐time bladder sensation. This study the protocol by measuring the effects of fill rateand ultrasound probe pressure during oral hydration. Methods Healthy volunteers with no urinary symptoms (based on International Consultation on Incontinence Questionnaire on Overactive Bladder surveys) were recruited into an oral hydration study. Throughout two complete fill–void cycles, participants drank 2 L Gatorade G2 (The Gatorade Company, Inc., Chicago, Illinois) and used a touch‐screen sensation meter to record real‐time bladder sensation (0%‐100%). The study was repeated three times, once per week (Visits A, B, and C). In Visits A and B, ultrasound was used to measure bladder volume every 5 minutes. Ultrasound was not used in Visit C except at 100% capacity. Volume data from Visit B were used to estimate volumes throughout the fills in Visit C. Sensation–capacity curves were generated for each fill for comparative analysis. Results Ten participants completed three visits (60 total fills). Increased fill rate led to decreased sensation throughout filling, andultrasound probe pressure led to increased sensation. Participants reported higher sensation at low volumes during Fill 1 of Visit A before training with the sensation meter. Sensation curves with intermittent ultrasound showed repeatability for Fill 2 in Visits A and B. Fill rate and ultrasound probe pressure affect real‐time bladder sensation during oral hydration. Conclusions This study demonstrated repeatability of real‐time bladder sensation during a two‐fill oral hydration protocol with ultrasound.
Internal rigid fixation is the gold-standard treatment for facial fractures, but there are some specific cases that are more amenable to external fixation (ex-fix) application. Herein, we discuss advantages and disadvantages to ex-fix in the modern treatment of comminuted mandible fractures, infected mandible fractures, fractures of the condylar region, oncologic mandibular resection, pediatric mandible fractures, and fractures in the edentulous patient.
BackgroundA strength of Drosophila as a model system is its utility as a tool to screen for novel regulators of various functional and developmental processes. However, the utility of Drosophila as a screening tool is dependent on the speed and simplicity of the assay used.MethodsHere, we use larval locomotion as an assay to identify novel regulators of skeletal muscle function. We combined this assay with muscle-specific depletion of 82 genes to identify genes that impact muscle function by their expression in muscle cells. The data from the screen were supported with characterization of the muscle pattern in embryos and larvae that had disrupted expression of the strongest hit from the screen.ResultsWith this assay, we showed that 12/82 tested genes regulate muscle function. Intriguingly, the disruption of five genes caused an increase in muscle function, illustrating that mechanisms that reduce muscle function exist and that the larval locomotion assay is sufficiently quantitative to identify conditions that both increase and decrease muscle function. We extended the data from this screen and tested the mechanism by which the strongest hit, fascin, impacted muscle function. Compared to controls, animals in which fascin expression was disrupted with either a mutant allele or muscle-specific expression of RNAi had fewer muscles, smaller muscles, muscles with fewer nuclei, and muscles with disrupted myotendinous junctions. However, expression of RNAi against fascin only after the muscle had finished embryonic development did not recapitulate any of these phenotypes.ConclusionsThese data suggest that muscle function is reduced due to impaired myoblast fusion, muscle growth, and muscle attachment. Together, these data demonstrate the utility of Drosophila larval locomotion as an assay for the identification of novel regulators of muscle development and implicate fascin as necessary for embryonic muscle development.Electronic supplementary materialThe online version of this article (10.1186/s13395-018-0159-9) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.