Infection with Zika virus has been associated with serious neurological complications and fetal abnormalities. However, the dynamics of viral infection, replication and shedding are poorly understood. Here we show that both rhesus and cynomolgus macaques are highly susceptible to infection by lineages of Zika virus that are closely related to, or are currently circulating in, the Americas. After subcutaneous viral inoculation, viral RNA was detected in blood plasma as early as 1 d after infection. Viral RNA was also detected in saliva, urine, cerebrospinal fluid (CSF) and semen, but transiently in vaginal secretions. Although viral RNA during primary infection was cleared from blood plasma and urine within 10 d, viral RNA was detectable in saliva and seminal fluids until the end of the study, 3 weeks after the resolution of viremia in the blood. The control of primary Zika virus infection in the blood was correlated with rapid innate and adaptive immune responses. We also identified Zika RNA in tissues, including the brain and male and female reproductive tissues, during early and late stages of infection. Re-infection of six animals 45 d after primary infection with a heterologous strain resulted in complete protection, which suggests that primary Zika virus infection elicits protective immunity. Early invasion of Zika virus into the nervous system of healthy animals and the extent and duration of shedding in saliva and semen underscore possible concern for additional neurologic complications and nonarthropod-mediated transmission in humans.
With the emerging Zika virus (ZIKV) epidemic, serologic diagnosis relies on a labor-intensive IgM antibody capture enzyme-linked immunosorbent assay (MAC-ELISA) and confirmation by a plaque reduction neutralization test (PRNT). To streamline serologic testing, several commercial assays have been developed. Our aim was to compare the commercial Euroimmun anti-ZIKV IgM and IgG assays to the reference MAC-ELISA and PRNT currently in use. Serum specimens submitted to Public Health Ontario Laboratory, Canada, were tested for IgM and IgG using the Euroimmun assays and the results were compared with those from MAC-ELISA. The PRNT was performed on positive or equivocal specimens using either MAC-ELISA or Euroimmun assays, MAC-ELISA-inconclusive specimens, and a convenience sample of specimens negative by both assays (cohort 1). Another set of specimens selected on the basis of PRNT results was subsequently tested by the Euroimmun assays (cohort 2). MAC-ELISA was positive, equivocal, negative, and inconclusive in 57/223, 15/223, 147/223, and 4/223 specimens, respectively. Among the 76 specimens that were MAC-ELISA positive, equivocal, or inconclusive, 30 (39.5%) were Euroimmun IgM and/or IgG positive or equivocal. Among the 147 MAC-ELISA-negative specimens, 136 (92.5%) were Euroimmun IgM and IgG negative. The sensitivity of the combined Euroimmun IgM/IgG against the PRNT was 83% (cohort 1) and 92% (cohort 2), whereas the specificity was 81% (cohort 1) and 65% (cohort 2). The combined Euroimmun IgM/IgG showed good specificity (92.5%) but suboptimal sensitivity (39.5%) compared with that of the MAC-ELISA. However, the sensitivity of the combined Euroimmun IgM/IgG against the PRNT was significantly higher (83 to 92%). More studies are needed before commercial assays are implemented for routine ZIKV serologic diagnosis.
Because of the global spread of Zika virus, accurate and high-throughput diagnostic immunoassays are needed. We compared the sensitivity and specificity of 5 commercially available Zika virus serologic assays to the recommended protocol of Zika virus IgM-capture ELISA and plaque-reduction neutralization tests. Most commercial immunoassays showed low sensitivity, which can be increased.
Zika virus (ZIKV) is an emerging pathogen causally associated with serious sequelae in fetuses, inducing fetal microcephaly and other neurodevelopment defects. ZIKV is primarily transmitted by mosquitoes, but can persist in human semen and sperm, and sexual transmission has been documented. Moreover, exposure of type-I interferon knockout mice to ZIKV results in severe damage to the testes, epididymis and sperm. Candidate ZIKV vaccines have shown protective efficacy in preclinical studies carried out in animal models, and several vaccines have entered clinical trials. Here, we report that administration of a synthetic DNA vaccine encoding ZIKV pre-membrane and envelope (prME) completely protects mice against ZIKV-associated damage to the testes and sperm and prevents viral persistence in the testes following challenge with a contemporary strain of ZIKV. These data suggest that DNA vaccination merits further investigation as a potential means to reduce ZIKV persistence in the male reproductive tract.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.