CTLA-4 is a costimulatory molecule that negatively regulates T cell activation. Originally identified in murine CD8+ T cells, it has been found to be rapidly induced on human T cells. Furthermore, CTLA-4 is expressed on regulatory T cells (Tregs). Clinically, targeting CTLA-4 has clinical utility in the treatment of melanoma. Whether the expression of CTLA-4 is differentially regulated in CD8+ vs. CD4+ human T cells is unclear. Here we analyzed CTLA-4 in normal human CD4+ and CD8+ T cell subsets and show for the first time that CTLA-4 is expressed significantly higher in the CD4+ T cells than in CD8+ T cells. CTLA-4 is higher at the protein and the transcriptional level in CD4+ T cells. This increase is due to activation of the CTLA-4 promoter, which undergoes acetylation at the proximal promoter. Furthermore, we show that blocking CTLA-4 on CD4+ T cells permits greater proliferation in CD4+ vs. CD8+ cells. These findings demonstrate a differential regulation of CTLA-4 on CD4+ and CD8+ T cell subsets, which is likely important to the clinical efficacy for anti-CTLA-4 therapies. The findings hint to strategies to modulate CTLA-4 expression by targeting epigenetic transcription to alter the immune response.
Highly regulated expression of the negative co-stimulatory molecule CTLA-4 on T-cells modulates T-cell activation and proliferation. CTLA-4 is preferentially expressed in Th2 T-cells, whose differentiation depends on the transcriptional regulator GATA3. Sezary syndrome (SS) is a T-cell malignancy characterized by Th2 cytokine skewing, impaired T-cell responses, and over-expression of GATA3 and CTLA-4. GATA3 is regulated by phosphorylation and ubiquitination. In SS cells, we detected increased polyubiquitinated proteins and activated GATA3. We hypothesized that proteasome dysfunction in SS T cells may lead to GATA3, and CTLA-4 over-expression. To test this hypothesis, we blocked proteasome function with bortezomib in normal T-cells, and observed sustained GATA3 and CTLA-4 upregulation. The increased CTLA-4 was functionally inhibitory in a mixed lymphocyte reaction (MLR). GATA3 directly transactivated the CTLA-4 promoter, and knockdown of GATA3 mRNA and protein inhibited CTLA-4 induction mediated by bortezomib. Finally, knockdown of GATA3 in patient’s malignant T-cells suppressed CTLA-4 expression. Here we demonstrate a new T-cell regulatory pathway that directly links decreased proteasome degradation of GATA-3, CTLA-4 upregulation, and inhibition of T-cell responses. We also demonstrate the presence of the GATA3/CTLA-4 regulatory pathway in fresh neoplastic CD4+ T-cells. Targeting of this pathway may be beneficial in SS and other CTLA-4-overexpressing T-cell neoplasms.
Bioactive Fas ligand (FasL)-expressing vesicles were generated (vesicle preparation, VP) from two cell lines overexpressing FasL. The effect of NOK-1 anti-FasL mAb (mouse IgG1) on the cytotoxicity of FasL VP against various targets was determined. At high concentrations (1–10 μg/ml), NOK-1 inhibited the cytotoxicity. By contrast, NOK-1 in the dose range of 1–100 ng/ml significantly enhanced cytotoxicity against the FcR+ LB27.4, M59, and LF+ targets, but not the FcR− Jurkat and K31H28 hybridoma T cell targets. The ability to enhance FasL VP-mediated cytotoxicity could be blocked by the FcR-specific mAb 2.4G2. Enhancement was also observed with FcR+ A20 B lymphoma but not with the FcR− A20 variant. Enhancement of FasL VP cytotoxicity was observed with five IgG anti-FasL mAbs, but not with an IgM anti-FasL mAb. Inhibition was observed with high doses of all mAb except the IgG anti-FasL mAb G247-4, which is specific to a segment outside the FasL binding site. Interestingly, under identical conditions but in the presence of 2.4G2, G247-4 inhibited the cytotoxicity of FasL VP. In addition, G247-4 inhibited the FasL VP-mediated killing of FcR− Jurkat. The data demonstrate that FasL-expressing bioactive vesicles display a property heretofore unknown in bioactive agents that express FasL-mediated cytotoxicity. The mechanism of the Ab-mediated, FcR-dependent enhancement of cytotoxicity of bioactive vesicles and its physiological significance are discussed.
BackgroundElevated numbers of regulatory T cells (Tregs) have been implicated in certain cancers. Depletion of Tregs has been shown to increase anti-tumor immunity. Tregs also play a critical role in the suppression of autoimmune responses. The study of Tregs has been hampered by a lack of adequate surface markers. Leucine Rich Repeat Containing 32 (LRRC32), also known as Glycoprotein A Repetitions Predominant (GARP), has been postulated as a novel surface marker of activated Tregs. However, there is limited information regarding the processing of LRRC32 or the regulatory phenotype and functional activity of Tregs expressing LRRC32.ResultsUsing naturally-occurring freshly isolated Tregs, we demonstrate that low levels of LRRC32 are present intracellularly prior to activation and that freshly isolated LRRC32+ Tregs are distinct from LRRC32- Tregs with respect to the expression of surface CD62L. Using LRRC32 transfectants of HEK cells, we demonstrate that the N-terminus of LRRC32 is cleaved prior to expression of the protein at the cell surface. Furthermore, we demonstrate using a construct containing a deleted putative signal peptide region that the presence of a signal peptide region is critical to cell surface expression of LRRC32. Finally, mixed lymphocyte assays demonstrate that LRRC32+ Tregs are more potent suppressors than LRRC32- Tregs.ConclusionsA cleaved signal peptide site in LRRC32 is necessary for surface localization of native LRRC32 following activation of naturally-occurring freshly-isolated regulatory T cells. LRRC32 expression appears to alter the surface expression of activation markers of T cells such as CD62L. LRRC32 surface expression may be useful as a marker that selects for more potent Treg populations. In summary, understanding the processing and expression of LRRC32 may provide insight into the mechanism of action of Tregs and the refinement of immunotherapeutic strategies aimed at targeting these cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.