COVID-19 is a respiratory illness caused by a novel coronavirus called SARS-CoV-2. The viral spike (S) protein engages the human angiotensin-converting enzyme 2 (ACE2) receptor to invade host cells with ~10–15-fold higher affinity compared to SARS-CoV S-protein, making it highly infectious. Here, we assessed if ACE2 polymorphisms can alter host susceptibility to SARS-CoV-2 by affecting this interaction. We analyzed over 290,000 samples representing >400 population groups from public genomic datasets and identified multiple ACE2 protein-altering variants. Using reported structural data, we identified natural ACE2 variants that could potentially affect virus–host interaction and thereby alter host susceptibility. These include variants S19P, I21V, E23K, K26R, T27A, N64K, T92I, Q102P and H378R that were predicted to increase susceptibility, while variants K31R, N33I, H34R, E35K, E37K, D38V, Y50F, N51S, M62V, K68E, F72V, Y83H, G326E, G352V, D355N, Q388L and D509Y were predicted to be protective variants that show decreased binding to S-protein. Using biochemical assays, we confirmed that K31R and E37K had decreased affinity, and K26R and T92I variants showed increased affinity for S-protein when compared to wildtype ACE2. Consistent with this, soluble ACE2 K26R and T92I were more effective in blocking entry of S-protein pseudotyped virus suggesting that ACE2 variants can modulate susceptibility to SARS-CoV-2.
ossil remains from ~100 million years ago (Ma) show that snakes were widely distributed across the world by the late Cretaceous period 1. During the course of their evolution, snakes lost their limbs, acquiring a serpentine body 2. Some also evolved or co-opted venom systems to help subdue, capture and digest their prey 2,3. The Colubroides clade of advanced snakes encompasses >3,000 extant species including >600 venomous species 4. The most venomous snakes include the true vipers and pit vipers, both members of the Viperidae family, and cobras, kraits, mambas and sea snakes from the Elapidae family 5. Although humans are not an intended target, accidental contact with venomous snakes can be deadly. Snakebite envenoming is a serious neglected tropical disease that affects ~5 million people worldwide annually, leading to ~400,000 amputations and >100,000 deaths 6. In India alone, the high rural population density combined with the presence of the 'big four' deadly snakes, namely the Indian cobra (Naja naja), Russell's viper (Daboia russelli), sawscaled viper (Echis carinatus) and common krait (Bungarus caeruleus), results in >46,000 snakebite-related deaths annually 7. Snake venom is a potent lethal cocktail rich in proteins and peptides, secreted by specialized venom gland cells. Venom components can be broadly classified as neurotoxic, cytotoxic, cardiotoxic or hemotoxic, and the composition can vary both between and within species 8-11. Currently, snake antivenom is the only treatment effective in the prevention or reversal of the effects of envenomation. Since 1896, antivenom has been developed by immunization of large mammals, such as the horse, with snake venom to generate a cocktail of antibodies that are used for therapy 12. Given the heterologous nature of these antibodies, they often elicit adverse immunological responses when treating snakebite victims 13. Moreover, the antivenom composition is not well defined and its ability to neutralize the venom
Summary Deregulated HER2 is a target of many approved cancer drugs. We analyzed 111,176 patient tumors and identified recurrent HER2 transmembrane domain (TMD) and juxtamembrane domain (JMD) mutations, including G660D, R678Q, E693K and Q709L. Using a saturation mutagenesis screen and testing of patient-derived mutations we found several activating TMD and JMD mutations. Structural modeling and analysis showed that the TMD/JMD mutations function by improving the active dimer interface or stabilizing an activating conformation. Further, we found that HER2 G660D employed asymmetric kinase dimerization for activation and signaling. Importantly, anti-HER2 antibodies and small molecule kinase inhibitors blocked the activity of TMD/JMD mutants. Consistent with this, a G660D germline mutant lung cancer patient showed remarkable clinical response to HER2 blockade.
Bacillithiol (BSH), an α-anomeric glycoside of L-cysteinyl-D-glucosaminyl-L-malate, is a major low molecular weight thiol found in low GC Gram-positive bacteria, such as Staphylococcus aureus. Like other low molecular weight thiols, BSH is likely involved in protection against a number of stresses. We examined S. aureus transposon mutants disrupted in each of the three genes associated with BSH biosynthesis. These mutants are sensitive to alkylating stress, oxidative stress, and metal stress indicating that BSH and BSH-dependent enzymes are involved in protection of S. aureus. We further demonstrate that BshB, a deacetylase involved in the second step of BSH biosynthesis, also acts as a BSH conjugate amidase and identify S. aureus USA 300 LAC 2626 as a BSH-S-transferase, which is able to conjugate chlorodinitrobenzene, cerulenin, and rifamycin to BSH.
We show that Mycobacterium smegmatis mutants disrupted in mscR, coding for a dual function S-nitrosomycothiol reductase and formaldehyde dehydrogenase, and mshC, coding for a mycothiol ligase and lacking mycothiol (MSH), are more susceptible to S-nitrosoglutathione (GSNO) and aldehydes than wild type. MSH is a cofactor for MscR, and both mshC and mscR are induced by GSNO and aldehydes. We also show that a mutant disrupted in egtA, coding for a γ-glutamyl cysteine synthetase and lacking in ergothioneine, is sensitive to nitrosative stress but not to aldehydes. In addition, we find that MSH and S-nitrosomycothiol reductase are required for normal biofilm formation in M. smegmatis, suggesting potential new therapeutic pathways to target to inhibit or disrupt biofilm formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.