Graphs showing sensitivity of average annual recharge and irrigation pumpage simulated by the SOil-WATer-Balance (SOWAT) model to changes in (A) irrigation efficiencies, (B) initial soil moisture, (C) minimum soil-moisture requirement, (D) effective precipitation, and (E) evapotranspiration ..
For more information on the USGS-the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment-visit http://www.usgs.gov or call 1-888-ASK-USGS.For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod/.Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. The authors thank James Cannia (formerly USGS) and Dennis Strauch (Pathfinder Irrigation District) for assistance with identifying potential intentional recharge sites. The authors thank M. Fienen (USGS) for assistance with parameter estimation and R. Niswonger (USGS) for assistance with the Newton-Rhapson solver. The authors also thank P. Jones and P. Barlow (USGS) for constructive reviews of earlier versions of this report and P. Barlow for assistance with application of the Groundwater-Management Process. DatumsVertical coordinate information is referenced to North American Vertical Datum of 1988 (NAVD 88).Horizontal coordinate information is referenced to the North American Datum of 1983 (NAD 83).Altitude, as used in this report, refers to distance above the vertical datum, sea level. Simulation of Groundwater Flow and Analysis of the AbstractThe North Platte Natural Resources District (NPNRD) has been actively collecting data and studying groundwater resources because of concerns about the future availability of the highly inter-connected surface-water and ground water resources. This report, prepared by the U.S. Geological Survey in cooperation with the North Platte Natural Resources District, describes a groundwater-flow model of the North Platte River valley from Bridgeport, Nebraska, extending west to 6 miles into Wyoming. The model was built to improve the understanding of the interaction of surface-water and groundwater resources, and as an optimization tool, the model is able to analyze the effects of water-management options on the simulated stream base flow of the North Platte River. The groundwater system and related sources and sinks of water were simulated using a newton formulation of the U.S. Geological Survey modular three-dimensional groundwater model, referred to as MODFLOW-NWT, which provided an improved ability to solve nonlinear unconfined aquifer simulations with wetting and drying of cells. Using previously published aquifer-base-altitude contours in conjunction with newer test-hole and geophysical data, a new base-of-aquifer altitude map was generated because of the strong effect of the aquifer-base topography on groundwater-flow direction and magnitude. The largest inflow to groundwater is recharge originating from water leaking from canals, which is much larger than recharge originating from infiltration of pr...
The west slope of the Blue Ridge mountains in central Virginia is a polyg and periglacial features. This paper proposes a general model relating the toeslope Quaternary landforms to climatically influenced geomorphic pro debris fans in the study area differ in their degree of soil development and clog debris flow chutes for the upper debris fans, are interpreted as solifluct periglacial episodes. Growth of the boulder streams and associated talus slopes can influence the magnitude and frequency of debris flows and fan formation during interglacials.
The High Plains aquifer underlies almost 112 million acres in the central United States. It is one of the largest aquifers in the Nation in terms of annual groundwater withdrawals and provides drinking water for 2.3 million people. The High Plains aquifer has gained national and international attention as a highly stressed groundwater supply primarily because it has been appreciably depleted in some areas. The U.S. Geological Survey has an active program to monitor the changes in groundwater levels for the High Plains aquifer and has documented substantial water-level changes since predevelopment: the High Plains Groundwater Availability Study is part of a series of regional groundwater availability studies conducted to evaluate the availability and sustainability of major aquifers across the Nation. The goals of the regional groundwater studies are to quantify current groundwater resources in an aquifer system, evaluate how these resources have changed over time, and provide tools to better understand a systems response to future demands and environmental stresses. The purpose of this report is to present selected data developed and synthesized for the High Plains aquifer as part of the High Plains Groundwater Availability Study. The High Plains Groundwater Availability Study includes the development of a water-budget-component analysis for the High Plains completed in 2011 and development of a groundwater-flow model for the northern High Plains aquifer. Both of these tasks require large amounts of data about the High Plains aquifer. Data pertaining to the High Plains aquifer were collected, synthesized, and then organized into digital data containers called geodatabases. There are 8 geodatabases, 1 file geodatabase and 7 personal geodatabases, that have been grouped in three categories: hydrogeologic data, remote sensing data, and water-budgetcomponent data. The hydrogeologic data pertaining to the northern High Plains aquifer is included in three separate geodatabases: (1) base data from a groundwater-flow model; (2) hydrogeology and hydraulic properties data; and (3) groundwater-flow model data to be used as calibration targets. The remote sensing data for this study were developed by the U. S. Geological Survey Earth Resources Observation and Science Center and include historical and predicted land-use/land-cover data and actual evapotranspiration data by using remotely sensed temperature data. The waterbudget-component data contains selected raster data from maps in the "Selected Approaches to Estimate Water-Budget
A previously published regional groundwater-flow model in north-central Nebraska was sequentially linked with the recently developed soil-water-balance (SWB) model to analyze effects to groundwater-flow model parameters and calibration results. The linked models provided a more detailed spatial and temporal distribution of simulated recharge based on hydrologic processes, improvement of simulated groundwater-level changes and base flows at specific sites in agricultural areas, and a physically based assessment of the relative magnitude of recharge for grassland, nonirrigated cropland, and irrigated cropland areas. Root-mean-squared (RMS) differences between the simulated and estimated or measured target values for the previously published model and linked models were relatively similar and did not improve for all types of calibration targets. However, without any adjustment to the SWB-generated recharge, the RMS difference between simulated and estimated base-flow target values for the groundwater-flow model was slightly smaller than for the previously published model, possibly indicating that the volume of recharge simulated by the SWB code was closer to actual hydrogeologic conditions than the previously published model provided. Groundwater-level and base-flow hydrographs showed that temporal patterns of simulated groundwater levels and base flows were more accurate for the linked models than for the previously published model at several sites, particularly in agricultural areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.