Existing entity typing systems usually exploit the type hierarchy provided by knowledge base (KB) schema to model label correlations and thus improve the overall performance. Such techniques, however, are not directly applicable to more open and practical scenarios where the type set is not restricted by KB schema and includes a vast number of free-form types. To model the underlying label correlations without access to manually annotated label structures, we introduce a novel label-relational inductive bias, represented by a graph propagation layer that effectively encodes both global label co-occurrence statistics and word-level similarities. On a large dataset with over 10,000 free-form types, the graph-enhanced model equipped with an attention-based matching module is able to achieve a much higher recall score while maintaining a high-level precision. Specifically, it achieves a 15.3% relative F1 improvement and also less inconsistency in the outputs. We further show that a simple modification of our proposed graph layer can also improve the performance on a conventional and widely-tested dataset that only includes KB-schema types. 1
Deep reinforcement learning (RL) has been a commonly-used strategy for the abstractive summarization task to address both the exposure bias and non-differentiable task issues. However, the conventional reward ROUGE-L simply looks for exact n-grams matches between candidates and annotated references, which inevitably makes the generated sentences repetitive and incoherent. In this paper, instead of ROUGE-L, we explore the practicability of utilizing the distributional semantics to measure the matching degrees. With distributional semantics, sentence-level evaluation can be obtained, and semantically-correct phrases can also be generated without being limited to the surface form of the reference sentences. Human judgments on Gigaword and CNN/Daily Mail datasets show that our proposed distributional semantics reward (DSR) has distinct superiority in capturing the lexical and compositional diversity of natural language.
Walk-based models have shown their advantages in knowledge graph (KG) reasoning by achieving decent performance while providing interpretable decisions. However, the sparse reward signals offered by the KG during traversal are often insufficient to guide a sophisticated walk-based reinforcement learning (RL) model. An alternate approach is to use traditional symbolic methods (e.g., rule induction), which achieve good performance but can be hard to generalize due to the limitation of symbolic representation. In this paper, we propose RuleGuider, which leverages high-quality rules generated by symbolicbased methods to provide reward supervision for walk-based agents. Experiments on benchmark datasets show that RuleGuider improves the performance of walk-based models without losing interpretability. 1
Walk-based models have shown their unique advantages in knowledge graph (KG) reasoning by achieving state-of-the-art performance while allowing for explicit visualization of the decision sequence. However, the sparse reward signals offered by the KG during a traversal are often insufficient to guide a sophisticated reinforcement learning (RL) model. An alternate approach to KG reasoning is using traditional symbolic methods (e.g., rule induction), which achieve high precision without learning but are hard to generalize due to the limitation of symbolic representation. In this paper, we propose to fuse these two paradigms to get the best of both worlds. Our method leverages high-quality rules generated by symbolic-based methods to provide reward supervision for walk-based agents. Due to the structure of symbolic rules with their entity variables, we can separate our walk-based agent into two sub-agents thus allowing for additional efficiency. Experiments on public datasets demonstrate that walk-based models can benefit from rule guidance significantly 1 . * Equal contributions. 1 Code and data will be released.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.