The availability of human genome sequence has transformed biomedical research over the past decade. However, an equivalent map for the human proteome with direct measurements of proteins and peptides does not exist yet. Here, we present a draft map of the human proteome using high resolution Fourier transform mass spectrometry. In-depth proteomic profiling of 30 histologically normal human samples including 17 adult tissues, 7 fetal tissues and 6 purified primary hematopoietic cells resulted in identification of proteins encoded by 17,294 genes accounting for ~84% of the total annotated protein-coding genes in humans. A unique and comprehensive strategy for proteogenomic analysis enabled us to discover a number of novel protein-coding regions, which includes translated pseudogenes, non-coding RNAs and upstream ORFs. This large human proteome catalog (available as an interactive web-based resource at http://www.humanproteomemap.org) will complement available human genome and transcriptome data to accelerate biomedical research in health and disease.
STAT3 activation has been observed in several autoimmune diseases, suggesting that STAT3-mediated pathways promote pathologic immune responses. We provide in vivo evidence that the fundamental role of STAT3 signaling in autoimmunity relates to its absolute requirement for generating TH17 T cell responses. We show that STAT3 is a master regulator of this pathogenic T cell subtype, acting at multiple levels in vivo, including TH17 T cell differentiation and cytokine production, as well as induction of RORγt and the IL-23R. Neither naturally occurring TH17 cells nor TH17-dependent autoimmunity occurs when STAT3 is ablated in CD4 cells. Furthermore, ablation of STAT3 signaling in CD4 cells results in increased TH1 responses, indicating that STAT3 signaling skews TH responses away from the TH1 pathway and toward the TH17 pathway. Thus, STAT3 is a candidate target for TH17-dependent autoimmune disease immunotherapy that could selectively inhibit pathogenic immune pathways.
Lymphocyte activation gene-3 (LAG-3) is a cell-surface molecule with diverse biologic effects on T cell function. We recently showed that LAG-3 signaling is important in CD4 + regulatory T cell suppression of autoimmune responses. Here, we demonstrate that LAG-3 maintains tolerance to self and tumor antigens via direct effects on CD8 + T cells using 2 murine systems. Naive CD8 + T cells express low levels of LAG-3, and expression increases upon antigen stimulation. Our data show increased levels of LAG-3 protein on antigen-specific CD8 + T cells within antigen-expressing organs or tumors. In vivo antibody blockade of LAG-3 or genetic ablation of the Lag-3 gene resulted in increased accumulation and effector function of antigen-specific CD8 + T cells within organs and tumors that express their cognate antigen. Most notably, combining LAG-3 blockade with specific antitumor vaccination resulted in a significant increase in activated CD8 + T cells in the tumor and disruption of the tumor parenchyma. A major component of this effect was CD4 independent and required LAG-3 expression by CD8 + T cells. Taken together, these data demonstrate a direct role for LAG-3 on CD8 + T cells and suggest that LAG-3 blockade may be a potential cancer treatment.
Regulatory T cells (Treg) are critical to the maintenance of immunological self-tolerance and immune homeostasis by suppressing aberrant or excessive immune responses. Treg specifically express the transcription factor Foxp3, which mediates the coordinate activation of genes such as CTLA-4 and GITR along with repression of T effector cytokines such as interleukin-2 and interferon-γ. Despite progress in understanding mechanisms of Foxp3-dependent gene activation, the molecular mechanism of Foxp3-dependent gene repression remains largely unknown. Herein we report the identification of Eos, a zinc-finger transcription factor of the Ikaros family, as a critical mediator of Foxp3-dependent gene silencing in Treg. Eos interacts directly with Foxp3 and is necessary for gene silencing without affecting expression of Foxp3 activated genes. We further demonstrate that Eos and its corepressor C-terminal binding protein 1 (CtBP1) are necessary for histone modifications and ultimately promoter methylation involved in selective gene silencing in Treg. Knockdown of Eos in Treg abrogates their ability to suppress immune responses in vitro and in vivo and endows them with partial effector function. This transcriptional control of Treg function through association between Foxp3 and Eos/co-repressor can potentially be exploited for immune-based therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.