Dealing with imbalanced data is a prevalent problem while performing classification on the datasets. Many times, this problem contributes to bias while making decisions or implementing policies. Thus, it is vital to understand the factors which causes imbalance in the data (or class imbalance). Such hidden biases and imbalances can lead to data tyranny, and a major challenge to a data democracy. In this chapter, two essential statistical elements are resolved: the degree of class imbalance and the complexity of the concept, solving such issues helps in building the foundations of a data democracy. Further, statistical measures which are appropriate in these scenarios are discussed and implemented on a real-life dataset (car insurance claims). In the end, popular data-level methods such as Random Oversampling, Random Undersampling, SMOTE, Tomek Link, and others are implemented in Python, and their performance is compared.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.