Key Points Question Can population-level genomic screening identify those at risk for disease? Findings In this cross-sectional study of an unselected population cohort of 50 726 adults who underwent exome sequencing, pathogenic and likely pathogenic BRCA1 and BRCA2 variants were found in a higher proportion of patients than was previously reported. Meaning Current methods to identify BRCA1/2 variant carriers may not be sufficient as a screening tool; population genomic screening for hereditary breast and ovarian cancer may better identify patients at high risk and provide an intervention opportunity to reduce mortality and morbidity.
Accurate and consistent variant classification is required for Precision Medicine. But clinical variant classification remains in its infancy. While recent guidelines put forth jointly by the American College of Medical Genetics and Genomics (ACMG) and Association of Molecular Pathology (AMP) for the classification of Mendelian variants has advanced the field, the degree of subjectivity allowed by these guidelines can still lead to inconsistent classification across clinical molecular genetic laboratories. In addition, there are currently no such guidelines for somatic cancer variants, only published institutional practices. Additional variant classification guidelines, including disease- or gene-specific criteria, along with inter-laboratory data sharing is critical for accurate and consistent variant interpretation.
IMPORTANCE Tumor mutation burden (TMB) is an emerging factor associated with survival with immunotherapy. When tumor-normal pairs are available, TMB is determined by calculating the difference between somatic and germline sequences. In the case of commonly used tumor-only sequencing, additional steps are needed to estimate the somatic alterations. Computational tools have been developed to determine germline contribution based on sample copy state, purity estimates, and occurrence of the variant in population databases; however, there is potential for sampling bias in population data sets. OBJECTIVE To investigate whether tumor-only filtering approaches overestimate TMB. DESIGN, SETTING, AND PARTICIPANTS This was a retrospective cohort study of 50 tumor samples from 10 different tumor types. A 595-gene panel test was used to assess TMB by adding all missense, indels, and frameshift variants with an allelic fraction of at least 5% and coverage of at least 100× within each tumor. Tumor-only TMB was evaluated against the criterion standard of matched germline-subtracted TMB at 3 levels. Level 1 removed all the tumor-only variants with allelic fraction of at least 1% in the Exome Aggregation Consortium database (with the Cancer Genome Atlas cohort removed). Level 2 removed all variants observed in population databases, simulating a naive approach of removing germline variation. Level 3 used an internal tumor-only pipeline for calculating TMB. These specimens were processed with a commercially available panel, and results were analyzed at the Mayo Clinic. Data were analyzed between December 1, 2018, and May 28, 2019. MAIN OUTCOMES AND MEASURES Tumor mutation burden per megabase (Mb) as determined by 3 levels of filtering and germline subtraction. RESULTS There were significantly higher estimates of TMB with level 1 (median [range] mutations per Mb, 28.8 [17.5-67.1]), level 2 (median [range] mutations per Mb, 20.8 [10.4-30.8]), and level 3 (median [range] mutations per Mb, 3.8 [0.8-12.1]) tumor-only filtering approaches than those determined by germline subtraction (median [range] mutations per Mb, 1.7 [0.4-9.2]). There were no strong associations between TMB estimates and tumor-germline TMB for level 1 filtering
Purpose: Clinically relevant variants exhibit a wide range of penetrance. Medical practice has traditionally focused on highly penetrant variants with large effect sizes and, consequently, classification and clinical reporting frameworks are tailored to that variant type. At the other end of the penetrance spectrum, where variants are often referred to as "risk alleles", traditional frameworks are no longer appropriate. This has led to inconsistency in how such variants are interpreted and classified. Here, we describe a conceptual framework to begin addressing this gap. Methods:We used a set of risk alleles to define data elements that can characterize the validity of reported disease associations. We assigned weight to these data elements and established classification categories expressing confidence levels. This framework was then expanded to develop criteria for inclusion of risk alleles on clinical reports.Results: Foundational data elements include cohort size, quality of phenotyping, statistical significance, and replication of results. Criteria for determining inclusion of risk alleles on clinical reports include presence of clinical management guidelines, effect size, severity of the associated phenotype, and effectiveness of intervention.Conclusions: This framework represents an approach for classifying risk alleles and can serve as a foundation to catalyze community efforts for refinement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.