ObjectiveThe opportunistic pathogen Streptococcus gallolyticus is one of the few intestinal bacteria that has been consistently linked to colorectal cancer (CRC). This study aimed to identify novel S. gallolyticus-induced pathways in colon epithelial cells that could further explain how S. gallolyticus contributes to CRC development.Design and ResultsTranscription profiling of in vitro cultured CRC cells that were exposed to S. gallolyticus revealed the specific induction of oxidoreductase pathways. Most prominently, CYP1A and ALDH1 genes that encode phase I biotransformation enzymes were responsible for the detoxification or bio-activation of toxic compounds. A common feature is that these enzymes are induced through the Aryl hydrocarbon receptor (AhR). Using the specific inhibitor CH223191, we showed that the induction of CYP1A was dependent on the AhR both in vitro using multiple CRC cell lines as in vivo using wild-type C57bl6 mice colonized with S. gallolyticus. Furthermore, we showed that CYP1 could also be induced by other intestinal bacteria and that a yet unidentified diffusible factor from the S. galloltyicus secretome (SGS) induces CYP1A enzyme activity in an AhR-dependent manner. Importantly, priming CRC cells with SGS increased the DNA damaging effect of the polycyclic aromatic hydrocarbon 3-methylcholanthrene.ConclusionThis study shows that gut bacteria have the potential to modulate the expression of biotransformation pathways in colonic epithelial cells in an AhR-dependent manner. This offers a novel theory on the contribution of intestinal bacteria to the etiology of CRC by modifying the capacity of intestinal epithelial or (pre-)cancerous cells to (de)toxify dietary components, which could alter intestinal susceptibility to DNA damaging events.
Chemotherapy induced painful peripheral neuropathy (CIPN) is a common dose-limiting side effect of several chemotherapeutic agents. Despite large amounts of human and animal studies, there is no sufficiently effective pharmacological treatment for CIPN. Although reducing pain is often a focus of CIPN treatment, remarkably few analgesics have been tested for this indication in clinical trials. We conducted a systematic review and meta-analyses regarding the effects of analgesics on stimulus evoked pain-like behaviour during CIPN in animal models. This will form a scientific basis for the development of prospective human clinical trials. A comprehensive search identified forty-six studies. Risk of bias (RoB) analyses revealed that the design and conduct of the included experiments were poorly reported, and therefore RoB was unclear in most studies. Meta-analyses showed that administration of analgesics significantly increases pain threshold for mechanical (SMD: 1.68 [1.41; 1.82]) and cold (SMD: 1. 41 [0.99; 1.83]) evoked pain. Subgroup analyses revealed that dexmedetomidine, celecoxib, fentanyl, morphine, oxycodone and tramadol increased the pain threshold for mechanically evoked pain, and lidocaine and morphine for cold evoked pain. Altogether, this meta-analysis shows that there is ground to investigate the use of morphine in clinical trials. Lidocaine, dexmedetomidine, celecoxib, fentanyl, oxycodone and tramadol might be good alternatives, but more animal-based research is necessary. Chemotherapy induced painful peripheral neuropathy is a common dose-limiting side effect of several chemotherapeutic agents (e.g. taxanes, platinum compounds, vinca alkaloids, epothilones, protease inhibitors and thalidomide). The pathophysiology of chemotherapy induced painful peripheral neuropathy, however, varies depending on which chemotherapeutic agent is being studied 1. The prevalence of chemotherapy induced painful peripheral neuropathy appears to be as high as 68% when measured in the first month after chemotherapy 2. CIPN often presents itself with impairments in sensory, motor, and sometimes autonomic function. The somatosensory symptoms, often characterised as "neuropathic pain", affect bilaterally hands and feet (stocking and glove distribution) and can include numbness, tingling sensation, spontaneous burning pain, and hypersensitivity to various stimuli. Symptoms may occur at any time during the course of chemotherapy or long after the treatment ended. Factors that influence the risk and severity of CIPN include cumulative dose, duration of treatment, combination of multiple neurotoxic chemotherapeutics. Neuropathic pain, especially in cases where patients develop an acute pain syndrome, lead to dose reduction or early cessation of chemotherapy, thereby potentially impacting patient survival and cancer re-emergence. Despite the large amount of human and experimental studies so far no sufficiently effective (prophylactic) treatment exists 3-5. One of the reasons for this could be that many of the agents that have been ...
dynamic interactions between tumor cells and immune cells promote the initiation, progression, metastasis and therapy-resistance of cancer. With respect to immunotherapy, immune cell populations such as cytotoxic cd8 + T-cells, cd56 + nK cells and myeloid phagocytic cells play decisive roles. from an imaging perspective, the immune system displays unique challenges, which have implications for the design and performance of studies. The immune system comprises highly mobile cells that undergo distinct phases of development and activation. These cells circulate through several compartments during their active life span and accumulate in rather limited numbers in cancer lesion, where their effector phenotype further diversifies. Given these features, accurate evaluation of the tumor microenvironment and its cellular components during anti-cancer immunotherapy is challenging. In-vivo imaging currently offers quantitative and sensitive modalities that exploit long-lived tracers to interrogate, e.g. distinct immune cell populations, metabolic phenotypes, specific targets relevant for therapy or critical for their effector function. This review provides a comprehensive overview of current status for in-vivo imaging tumor-infiltrating immune cell populations, focusing on lymphocytes, nK cells and myeloid phagocytic cells, with emphasis on clinical translation.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.