Background and objective: Convolutional neural networks (CNNs) play an important role in the field of medical image segmentation. Among many kinds of CNNs, the U-net architecture is one of the most famous fully convolutional network architectures for medical semantic segmentation tasks. Recent work shows that the U-net network can be substantially deeper thus resulting in improved performance on segmentation tasks. Though adding more layers directly into network is a popular way to make a network deeper, it may lead to gradient vanishing or redundant computation during training. Methods: A novel CNN architecture is proposed that integrates the Inception-Res module and densely connecting convolutional module into the U-net architecture. The proposed network model consists of the following parts: firstly, the Inception-Res block is designed to increase the width of the network by replacing the standard convolutional layers; secondly, the Dense-Inception block is designed to extract features and make the network more deep without additional parameters; thirdly, the down-sampling block is adopted to reduce the size of feature maps to accelerate learning and the up-sampling block is used to resize the feature maps. Results: The proposed model is tested on images of blood vessel segmentations from retina images, the lung segmentation of CT Data from the benchmark Kaggle datasets and the MRI scan brain tumor segmentation datasets from MICCAI BraTS 2017. The experimental results show that the proposed method can provide better performance on these two tasks compared with the state-of-the-art algorithms. The results reach an average Dice score of 0.9857 in the lung segmentation. For the blood vessel segmentation, the results reach an average Dice score of 0.9582. For the brain tumor segmentation, the results reach an average Dice score of 0.9867. Conclusions: The experiments highlighted that combining the inception module with dense connections in the U-Net architecture is a promising approach for semantic medical image segmentation.
Inverse synthetic apcrturc radar CISAR) produces images of ships at sea whic h human o perators can be trained to recognize Because ISAR uses the ship's own varying angular motions (roll, pitch, and yaw) for cross-rang e resolution, the viewing aspect and cross-cange scale factor are co ntinually changing on time scales of a few seconds. This and other characteristics of ISAR imaging make the problem of automatic recognition of ISAR images quite di stinct from the recog nition of optical im ages. The nature of ISAR imaging of ships, and single-frame and multiple-frame techniques for segmentation, feature extraction, and cl assification are described. Results are shown which Illustrate a capability for automatic re cog nition of ISAR ship imagery.
Abstract-This paper describes the application of a Convolutional Neural Network (CNN) in the context of a predator/prey scenario. The CNN is trained and run on data from a Dynamic and Active Pixel Sensor (DAVIS) mounted on a Summit XL robot (the predator), which follows another one (the prey). The CNN is driven by both conventional image frames and dynamic vision sensor "frames" that consist of a constant number of DAVIS ON and OFF events. The network is thus "data driven" at a sample rate proportional to the scene activity, so the effective sample rate varies from 15 Hz to 240 Hz depending on the robot speeds. The network generates four outputs: steer right, left, center and non-visible. After off-line training on labeled data, the network is imported on the on-board Summit XL robot which runs jAER and receives steering directions in real time. Successful results on closed-loop trials, with accuracies up to 87% or 92% (depending on evaluation criteria) are reported. Although the proposed approach discards the precise DAVIS event timing, it offers the significant advantage of compatibility with conventional deep learning technology without giving up the advantage of datadriven computing.
Object-level data association and pose estimation play a fundamental role in semantic SLAM, which remain unsolved due to the lack of robust and accurate algorithms. In this work, we propose an ensemble data associate strategy for integrating the parametric and nonparametric statistic tests. By exploiting the nature of different statistics, our method can effectively aggregate the information of different measurements, and thus significantly improve the robustness and accuracy of data association. We then present an accurate object pose estimation framework, in which an outliers-robust centroid and scale estimation algorithm and an object pose initialization algorithm are developed to help improve the optimality of pose estimation results. Furthermore, we build a SLAM system that can generate semi-dense or lightweight object-oriented maps with a monocular camera. Extensive experiments are conducted on three publicly available datasets and a real scenario. The results show that our approach significantly outperforms stateof-the-art techniques in accuracy and robustness. The source code is available on https://github.com/yanmin-wu/ EAO-SLAM.
Object-oriented SLAM is a popular technology in autonomous driving and robotics. In this paper, we propose a stereo visual SLAM with a robust quadric landmark representation method. The system consists of four components, including deep learning detection, quadric landmark initialization, object data association and object pose optimization. State-of-the-art quadric-based SLAM algorithms always face observation related problems and are sensitive to observation noise, which limits their application in outdoor scenes. To solve this problem, we propose a quadric initialization method based on the separation of the quadric parameters method, which improves the robustness to observation noise. The sufficient object data association algorithm and object-oriented optimization with multiple cues enables a highly accurate object pose estimation that is robust to local observations. Experimental results show that the proposed system is more robust to observation noise and significantly outperforms current stateof-the-art methods in outdoor environments. In addition, the proposed system demonstrates real-time performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.