Indium phosphide (InP)-based quantum dots (QDs) are widely studied as environmentally friendly light emitters for display applications. However, the synthesis of InP QDs with optical properties that meet high color quality as comparable with cadmium (Cd)- and lead (Pb)-based QDs is challenging. In this article, we present the synthesis of surface-modified bright green luminescence InP core–shell quantum dots (CS-QDs) with the narrowest full width at half-maximum (fwhm) of 33 nm, absolute quantum yield (QY) of 71%, and an absorption spectra valley/depth (V/D) ratio of 0.61 after a size selection purification process. Our approach first emphasizes the heating temperatures for InP growth and second on the importance of surface stabilization of this system. We developed a two-step heating-up process to grow In(Zn)P core and coated inorganic shell with ZnSe/ZnSeS/ZnS composition. In situ surface treatment with zinc chloride (ZnCl2) and 1-octanol was carried out to enhance the PLQY and improve the surface passivation of the CS-QDs. Optical spectroscopy and surface characterization techniques including nuclear magnetic resonance (NMR), X-ray photoelectron spectroscopy (XPS), and infrared (IR) spectroscopy were used to analyze the properties of the CS-QDs. We suggest that this work motivates future development and optimization of surface chemistry of InP CS-QDs to enable the full access and realization of their luminescence efficiency in high-color-quality cadmium (Cd)-free displays.
Challenges in the development of a multi‐level memory (MM) device for multinary arithmetic computers have posed an obstacle to low‐power, ultra‐high‐speed operation. For the effective transfer of a huge amount of data between arithmetic and storage devices, optical communication technology represents a compelling solution. Here, by replicating a floating gate architecture with CdSe/ZnS type‐I core/shell quantum dots (QDs), a 2D–0D hybrid optical multi‐level memory (OMM) device operated is demonstrated by laser pulses. In the device, laser pulses create linear optically trapped currents with MM characteristics, while conversely, voltage pulses reset all the trapped currents at once. Assuming electron transfer via the energy band alignment between MoS2 and CdSe, the study also establishes the mechanism of the OMM effect. Analysis of the designed device led to a new hypothesis that charge transfer is difficult for laterally adjacent QDs facing a double ZnS shell, which is tested by separately stimulating different positions on the 2D–0D hybrid structure with finely focused laser pulses. Results indicate that each laser pulse induced independent MM characteristics in the 2D–0D hybrid architecture. Based on this phenomenon, we propose a MM inverter to produce MM effects, such as programming and erasing, solely through the use of laser pulses. Finally, the feasibility of a fully optically‐controlled intelligent system based on the proposed OMM inverters is evaluated through a CIFAR‐10 pattern recognition task using a convolutional neural network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.