Abstract-Cardiac malformations constitute the most common birth defects, of which heart septal and valve defects are the most frequent forms diagnosed in infancy. These cardiac structures arise from the endocardial cushions through dynamic interactions between cells and the extracellular matrix (cardiac jelly). Targeted deletion of the hyaluronan synthase-2 (Has2) gene in mice results in an absence of hyaluronan (HA), cardiac jelly, and endocardial cushions, a loss of vascular integrity, and death at embryonic day 9.5. Despite the requirements for Has2 and its product, HA, in the developing heart, little is known about the normal processing and removal of HA during development. Cell culture studies show that HA obtains new bioactivity after depolymerization into small oligosaccharides. We previously showed reduction in Has2 expression and diminished presence of HA at later stages of heart development as tissue remodeling formed the leaflets of the cardiac valves. Here we show that small oligosaccharide forms of HA (o-HA) act antagonistically to developmental epithelial-to-mesenchymal transformation (EMT), which is required to generate the progenitor cells that populate the endocardial cushions. We further show that o-HA induces vascular endothelial growth factor (VEGF), which acts as a negative regulator of EMT. This is the first report illustrating a functional link between oligosaccharide HA and VEGF. Collectively, our data indicate that following endocardial cell EMT, native HA is likely processed to o-HA, which stimulates VEGF activity to attenuate cardiac developmental EMT. (Circ Res. 2006;99:583-589.)
Cardiovascular disease is the leading cause of death in the United States and worldwide. High incidence of cardiovascular diseases has been linked to populations with elevated arsenic content in their drinking water. Although this correlation has been established in many epidemiological studies, a lack of experimental models to study mechanisms of arsenic-related cardiovascular pathogenesis has limited our understanding on how arsenic exposure predisposes for development of hypertension and increased cardiovascular mortality. Our studies show that mice chronically exposed to drinking water containing 100 parts per billion (ppb) sodium arsenite for 22 weeks show an increase in both systolic and diastolic blood pressure. Echocardiographic analyses, as well as histological assessment show concentric left ventricular hypertrophy, a primary cardiac manifestation of chronic hypertension. Live imaging by echocardiography shows a 43% increase in left ventricular mass in arsenic treated animals. Relative wall thickness (RWT) was calculated showing that all the arsenic exposed animals show a RWT greater than 0.45, indicating concentric hypertrophy. Importantly, left ventricular hypertrophy, although often associated with chronic hypertension, is an independent risk factor for cardiovascular related mortalities. These results suggest that chronic low level arsenite exposure promotes the development of hypertension, and the co-morbidity of concentric hypertrophy.
The transmembrane mucin MUC1 is overexpressed in most ductal carcinomas, and its overexpression is frequently associated with metastatic progression. MUC1 can drive tumor initiation and progression via interactions with many oncogenic partners, including β-catenin, the epidermal growth factor receptor (EGFR) and Src. The decoy peptide PMIP (Protein transduction domain MUC1 Inhibitory Peptide) has been shown to inhibit the tumor promoting activities of MUC1 in breast and lung cancer, including cell growth and invasion, and its usage suppresses metastatic progression in mouse models of breast cancer. To further characterize the reduced metastasis observed upon PMIP treatment, we performed motility assays and observed that PMIP inhibits cell motility of breast cancer cells. To determine the mechanism by which PMIP inhibits motility, we evaluated changes in global gene transcription upon PMIP treatment, and identified a number of genes with altered expression in response to PMIP. Among these genes is the metastatic mediator, c-Met, a transmembrane tyrosine kinase that can promote cell scattering, migration and invasion. To further investigate the role of c-Met in MUC1-dependent metastatic events, we evaluated the effects of MUC1 expression and EGFR activation on breast cancer cell scattering, branching and migration. We found that MUC1 strongly promoted all of these events and this effect was further amplified by EGF treatment. Importantly, the effect of MUC1 and EGF on these phenotypes was dependent upon c-Met activity. Overall, these results indicate that PMIP can block the expression of a key metastatic mediator, further advancing its potential use as a clinical therapeutic.
The ERBB receptors are a family of heterodimerization partners capable of driving transformation and metastasis. While the therapeutic targeting of single receptors has proven efficacious, optimal targeting of this receptor family should target all oncogenic members simultaneously. The juxtamembrane domains of ERBB1, ERBB2, and ERBB3 are highly conserved and control various aspects of ERBB-dependent biology. In an effort to block those functions, we have targeted this domain with decoy peptides synthesized in tandem with a cell-penetrating peptide, termed EJ1. Treatment with EJ1 induces cell death, promotes the formation of inactive ERBB multimers, and results in simultaneous reduction of ERBB1, ERBB2, and ERBB3 activation. Treatment also results in the activation of myosin light chain-dependent cell blebbing while inactivating CaMKII signaling, coincident with the induction of cell death. EJ1 also directly translocates to mitochondria, correlating with a loss of mitochondrial membrane potential and production of reactive oxygen species. Finally, treatment of a mouse model of breast cancer with EJ1 results in the inhibition of tumor growth and metastasis without associated toxicities in normal cells. Overall, these data demonstrate that a portion of the ERBB jxm domain, when used as an intracellular decoy, can inhibit tumor growth and metastasis, representing a novel anticancer therapeutic.
Exposure to arsenic results in several types of cancers as well as heart disease. A major contributor to ischemic heart pathologies is coronary artery disease, however the influences by environmental arsenic in this disease process are not known. Similarly, the impact of toxicants on blood vessel formation and function during development has not been studied. During embryogenesis, the epicardium undergoes proliferation, migration, and differentiation into several cardiac cell types including smooth muscle cells which contribute to the coronary vessels. The TGFβ family of ligands and receptors are essential for developmental cardiac epithelial to mesenchymal transition (EMT) and differentiation into coronary smooth muscle cells. In this in vitrostudy, 18 hour exposure to 1.34 μMarsenite disrupted developmental EMT programming in murine epicardial cells causing a deficit in cardiac mesenchyme. The expression of EMT genes including TGFβ2, TGFβ receptor-3, Snail, and Has-2 are decreased in a dose-dependent manner following exposure to arsenite. TGFβ2 cell signaling is abrogated as detected by decreases in phosphorylated Smad2/3 when cells are exposed to 1.34 μMarsenite. There is also loss of nuclear accumulation pSmad due to arsenite exposure. These observations coincide with a decrease invimentinpositive mesenchymal cells invading three-dimensional collagen gels. However, arsenite does not block TGFβ2 mediated smooth muscle cell differentiation by epicardial cells. Overall these results show that arsenic exposure blocks developmental EMT gene programming in murine coronary progenitor cells by disrupting TGFβ2 signals and Smad activation, and that smooth muscle cell differentiation is refractory to this arsenic toxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.