Cloud Computing has taken commercial computing by storm. However, adoption of cloud computing platforms and services by the scientific community is in its infancy as the performance and monetary cost-benefits for scientific applications are not perfectly clear. This is especially true for desktop grids (aka volunteer computing) applications. We compare and contrast the performance and monetary cost-benefits of clouds for desktop grid applications, ranging in computational size and storage. We address the following questions: (i) What are the performance tradeoffs in using one platform over the other? (ii) What are the specific resource requirements and monetary costs of creating and deploying applications on each platform? (iii) In light of those monetary and performance cost-benefits, how do these platforms compare? (iv) Can cloud computing platforms be used in combination with desktop grids to improve cost-effectiveness even further? We examine those questions using performance measurements and monetary expenses of real desktop grids and the Amazon elastic compute cloud.
Abstract-Recently introduced spot instances in the AmazonElastic Compute Cloud (EC2) offer lower resource costs in exchange for reduced reliability; these instances can be revoked abruptly due to price and demand fluctuations. Mechanisms and tools that deal with the cost-reliability trade-offs under this schema are of great value for users seeking to lessen their costs while maintaining high reliability. We study how one such a mechanism, namely checkpointing, can be used to minimize the cost and volatility of resource provisioning. Based on the real price history of EC2 spot instances, we compare several adaptive checkpointing schemes in terms of monetary costs and improvement of job completion times. Trace-based simulations show that our approach can reduce significantly both price and the task completion times.
Desktop resources are attractive for running compute-intensive distributed applications. Several systems that aggregate these resources in desktop grids have been developed. While these systems have been successfully used for a wide variety of high throughput applications there has been little insight into the detailed temporal structure of CPU availability of desktop grid resources. Yet, this structure is critical to characterize the utility of desktop grid platforms for both task parallel and even data parallel applications.We address the following questions: (i) What are the temporal characteristics of desktop CPU availability in an enterprise setting? (ii) How do these characteristics affect the utility of desktop grids? (iii) Based on these characteristics, can we construct a model of server "equivalents" for the desktop grids, which can be used to predict application performance? We present measurements of an enterprise desktop grid with over 220 hosts running the Entropia commercial desktop grid software. We utilize these measurements to characterize CPU availability and develop a performance model for desktop grid applications for various task granularities, showing that there is an optimal task size. We then introduce a new metric, cluster equivalence, which we use to quantify the utility of the desktop grid relative to that of a dedicated cluster.
. (2010). The failure trace archive : enabling comparative analysis of failures in diverse distributed systems. In Proceedings of the 10th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID'10, Melbourne, Australia, May 17-20, 2010) (pp. 398-407). Institute of Electrical and Electronics Engineers (IEEE). DOI: 10.1109/CCGRID.2010.71 General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.• You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.