Raman spectroscopy showing the initial formation of SnSe2 followed by the stabilization of SnSe with increased growth time.
The temperature-dependent desorption behavior of selenium and tellurium is investigated using a heated quartz crystal microbalance. Prior to heating the quartz crystal microbalance, selenium and tellurium films with varying thickness were deposited using thermal effusion cells in a molecular beam epitaxy system for subsequent determination of temperature-dependent mass loss of the deposited films. The desorption rate for tellurium was found to exhibit one sharp peak around 190 °C, indicating the loss of the entire film irrespective of film thickness within a temperature window of 20 °C, which was completely evaporated at 200 °C. Similar experiments for selenium revealed that the thermal desorption took place via a two-stage process with a smaller portion of the material desorbing within an even narrower temperature window of 5 °C at a much lower peak temperature of 65 °C, while most selenium desorbed within a temperature range of 10 °C around 90 °C. This two-stage behavior indicated the presence of at least two chemically distinct selenium species or binding states. The direct and quantitative determination of the chalcogen desorption process provides important insights into the kinetics of chalcogenide-based film growth and is in addition of applied benefit to the research community in the area of Se/Te capping and decapping of air sensitive materials as it provides temperature ranges and rates at which full desorption is achieved. Our work furthermore points toward the need for a more detailed understanding of the chemical composition state of atomic and molecular beams supplied from thermal evaporation sources during growth.
The sticking coefficients of selenium and tellurium were measured as a function of temperature. Molecular beams of the chalcogen elements supplied from thermal effusion cells were directed onto a heated quartz crystal microbalance, and the mass gain rate was detected as a function of temperature. Both sticking coefficients were found to sharply drop within a narrow temperature range of 20 and 30 °C from above 0.8 down to about 0.2 at film surface temperatures around 35 and 115 °C for selenium and tellurium, respectively. While the sticking coefficient of tellurium reached zero at temperatures above 150 °C, the sticking coefficient of selenium remained about 0.2 up to a film surface temperature of 60 °C, suggesting that selenium was supplied in different chemical forms. The direct and quantitative determination of the sticking coefficients provides important insights into the kinetics of chalcogenide-based film growth and points toward the need of a precise sample temperature control.
γ-InSe is a semiconductor that holds promising potential in high-performance field-effect transistors and optoelectronic devices. Large-scale, single-phase γ-InSe deposition has proven challenging because of the difficulty in precise control of stoichiometry and the coexistence of different indium selenide phases. In this study, we demonstrate the wafer-scale combinatorial approach to map out the growth window as functions of the Se/In ratio and growth temperature for γ-InSe on the Si(111) 7 × 7 substrate in molecular beam epitaxy. X-ray diffraction (XRD) was used to identify the indium selenide phases, while atomic force microscopy revealed four distinct surface morphologies of γ-InSe, enabling a discussion of the growth mechanisms associated with each morphology. Cross-sectional atomic resolution scanning transmission electron microscopy confirmed that the film was of high crystalline quality and had nearly single-phase γ-InSe. Our comprehensive study elucidates the In–Se phase map for thin film growth parameters, providing invaluable landmarks for the reproducible synthesis of high-quality γ-InSe layers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.