Inferring the evolutionary history of cognitive abilities requires large and diverse samples. However, such samples are often beyond the reach of individual researchers or institutions, and studies are often limited to small numbers of species. Consequently, methodological and site-specific-differences across studies can limit comparisons between species. Here we introduce the ManyPrimates project, which addresses these challenges by providing a large-scale collaborative framework for comparative studies in primate cognition. To demonstrate the viability of the project we conducted a case study of short-term memory. In this initial study, we were able to include 176 individuals from 12 primate species housed at 11 sites across Africa, Asia, North America and Europe. All subjects were tested in a delayed-response task using consistent methodology across sites. Individuals could access food rewards by remembering the position of the hidden reward after a 0, 15, or 30-second delay. Overall, individuals performed better with shorter delays, as predicted by previous studies. Phylogenetic analysis revealed a strong phylogenetic signal for short-term memory. Although, with only 12 species, the validity of this analysis is limited, our initial results demonstrate the feasibility of a large, collaborative open-science project. We present the ManyPrimates project as an exciting opportunity to address open questions in primate cognition and behaviour with large, diverse datasets.
The field of primate cognition studies how primates, including humans, perceive, process, store, retrieve, and use information to guide decision making and other behavior. Much of this research is motivated by a desire to understand how these abilities evolved. Large and diverse samples from a wide range of species are vital to achieving this goal. In reality, however, primate cognition research suffers from small sample sizes and is often limited to a handful of species, which constrains the evolutionary inferences we can draw. We conducted a systematic review of primate cognition research published between 2014 and 2019 to quantify the extent of this problem. Across 574 studies, the median sample size was 7 individuals. Less than 15% of primate species were studied at all, and only 19% of studies included more than one species. Further, the species that were studied varied widely in how much research attention they received, partly because a small number of test sites contributed most of the studies. These results suggest that the generalizability of primate cognition studies may be severely limited. Publication bias, questionable research practices, and a lack of replication attempts may exacerbate these problems. We describe the ManyPrimates project as one approach to overcoming some of these issues by establishing an infrastructure for large-scale collaboration in primate cognition research. Building on similar initiatives in other areas of psychology, this approach has already yielded one of the largest and most diverse primate samples to date and enables us to ask many research questions that can only be addressed through collaboration.
Short-term memory is implicated in a range of cognitive abilities and is critical for understanding primate cognitive evolution. To investigate the effects of phylogeny, ecology and sociality on short-term memory, we tested the largest and most diverse primate sample to date (421 non-human primates across 41 species) in an experimental delayed-response task. Our results confirm previous findings that longer delays decrease memory performance across species and taxa. Our analyses demonstrate a considerable contribution of phylogeny over ecological and social factors on the distribution of short-term memory performance in primates; closely related species had more similar short-term memory abilities. Overall, individuals in the branch of Hominoidea performed better compared to Cercopithecoidea, who in turn performed above Platyrrhini and Strepsirrhini. Interdependencies between phylogeny and socioecology of a given species presented an obstacle to disentangling the effects of each of these factors on the evolution of short-term memory capacity. However, this study offers an important step forward in understanding the interspecies and individual variation in short-term memory ability by providing the first phylogenetic reconstruction of this trait’s evolutionary history. The dataset constitutes a unique resource for studying the evolution of primate cognition and the role of short-term memory in other cognitive abilities.
Facial mimicry is a central feature of human social interactions. Although it has been evidenced in other mammals, no study has yet shown that this phenomenon can reach the level of precision seem in humans and gorillas. Here, we studied the facial complexity of group-housed sun bears, a typically solitary species, with special focus on testing for exact facial mimicry. Our results provided evidence that the bears have the ability to mimic the expressions of their conspecifics and that they do so by matching the exact facial variants they interact with. In addition, the data showed the bears produced the open-mouth faces predominantly when they received the recipient’s attention, suggesting a degree of social sensitivity. Our finding questions the relationship between communicative complexity and social complexity, and suggests the possibility that the capacity for complex facial communication is phylogenetically more widespread than previously thought.
Human vocal ontogeny is considered to be a process whereby a large repertoire of discrete sounds seemingly emerges from a smaller number of acoustically graded vocalizations. While adult chimpanzee vocal behavior is highly graded, its developmental trajectory is poorly understood. In the present study, we therefore examined the size and structure of the chimpanzee vocal repertoire at different stages of ontogeny. Audio recordings were collected on infant (N = 13) and juvenile (N = 13) semi-wild chimpanzees at Chimfunshi Wildlife Orphanage, Zambia, using focal and ad libitum sampling. All observed call types were acoustically measured. These were predominantly grunts, whimpers, laughs, screams, hoos, and barks and squeaks. A range of spectral and temporal acoustic parameters were extracted, and fuzzy c-means clustering was used to quantify the size and structure of the repertoire. The infant and juvenile vocal repertoires were both best described with the same number of clusters. However, compared to infants, juvenile call clusters were less distinct from one another and could be extracted only when a low level of overlap between call clusters was permitted. Moreover, the acoustic overlap between call clusters was significantly higher for juveniles. Overall, this pattern shows greater acoustic overlap in juvenile vocalizations compared to infants, suggesting a trend toward increased acoustic gradation in chimpanzee vocal ontogeny. This may imply in contrast to humans, chimpanzees become increasingly proficient in using graded signals effectively rather than developing a larger repertoire of more discrete sounds in ontogeny.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.