The self-assembly of two nonionic surfactants, pentaethylene glycol monododecyl ether (C 12 E 5 ) and n-dodecyl-ß-maltoside (ß-C 12 G 2 ), in the presence of a purpose-synthesized silica sol of uniform particle size (diameter 16 nm) has been studied by adsorption measurements, dynamic light scattering and small-angle neutron scattering (SANS) using a H 2 O/D 2 O mixture matching the silica, in order to highlight the structure of the surfactant aggregates. For C 12 E 5 strong aggregative adsorption onto the silica beads, with a high plateau value of the adsorption isotherm above the CMC was found. SANS measurements were made at a series of loadings, from zero surfactant up to maximum surface coverage. It is found that the spherical core-shell model nicely reproduces the SANS data up to and including the local maximum at q = 0.42 nm -1 but not in the Porod region of high q, indicating that the surface area of the adsorbed surfactant is underestimated by the model of a uniform adsorbed layer. A satisfactory representation of the entire scattering profiles is obtained with the model of micelle-decorated silica beads, indicating that C 12 E 5 is adsorbed as spherical micellar aggregates. This behaviour is attributed to the high surface curvature of the silica which prevents an effective packing of the hydrophobic chains of the amphiphile in a bilayer configuration. For the maltoside surfactant ß-C 12 G 2 very weak adsorption on the silica beads was found. The SANS profile indicates that this surfactant forms oblate ellipsoidal micelles in the silica dispersion, as in the absence of the silica beads.
The collapse kinetics of microgels is determined experimentally and by mesoscale computer simulations.
The surface aggregates structure of dimethyldodecylamine-N-oxide (C 12 DAO) in three silica dispersions of different particle sizes (16 -42 nm) was studied by small-angle neutron scattering (SANS) in a H 2 O/D 2 O solvent mixture matching the silica. At the experimental conditions (pH 9) the surfactant exists in its nonionic form and the structure of the adsorbed layer is not affected by added electrolyte. It is found that C 12 DAO forms spherical surface micelles of 2 nm diameter on the 16 nm silica particles, but oblate ellipsoidal surface micelles are formed on the 27 and 42 nm particles. The dimensions of these oblate surface aggregates (minor and major semi-axes R n and R lat ) are similar to those of C 12 DAO micelles in the aqueous solutions. It is concluded that the morphological transition from spherical to ellipsoidal surface aggregates is induced by the surface curvature of the silica particles. A comparison of the shape and dimensions of the surface aggregates formed by C 12 DAO and C 12 E 5 on the 16 nm silica particles demonstrates that the nature of the surfactant head group does not determine the morphology of the surface aggregates, but has a strong influence on the number of surface aggregates per particle, due to the different interactions of the head groups with the silica surface.2
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.