An 8-week feeding trial was conducted to evaluate the effects of a dairy-yeast prebiotic (Grobiotic â -A) on growth performance, body composition, antioxidant capacity and immune functions of juvenile starry flounder, Platichtahys stellatus. Three triplicates of starry flounder (average initial weight of 15.05 AE 0.04 g) were fed one of six diets formulated to supplement dairy-yeast prebiotic at 0%, 0.4%, 0.8%, 1.2%, 1.6% or 2.0% respectively. Results showed that weight gain, daily feed intake, protein efficiency rate and condition factor increased significantly (P < 0.05) whereas feed conversion ratio decreased significantly with the increasing level of the dairy-yeast prebiotic supplement. Crude lipid content in dorsal muscle and liver decreased significantly (P < 0.05). No significant differences occurred in moisture and crude protein content of dorsal muscle and liver with the increasing level of the dairy-yeast prebiotic supplement. Compared with fish feed the basal diet, the activity of catalase and total antioxidant capability in serum and liver, as well as total superoxide dismutase in serum all significantly increased with high level of the prebiotic, while the malondialdehyde content in serum and liver decreased significantly. In serum, the activity of alkaline phosphatase, lysozyme, complement and the content of nitric oxide were significantly increased at higher level of prebiotic supplementation while no significant differences were found in total protein, albumin, globulin, albumin to globulin ratio, haemoglobin, acid phosphatase and myeloperoxidase. Based on weight gain response using the quadratic regression, combine the antioxidant and immune indices, the optimum dietary dairy-yeast prebiotic level for juvenile starry flounder was estimated to be 1.33% under these experimental conditions.
STUDY QUESTION Do changes in tumor necrosis factor-α-induced protein 8 (TNFAIP8)-like 2 (TIPE2) levels in endometrium of patients with adenomyosis alter the proliferation, migration and invasion ability of endometrial cells? SUMMARY ANSWER TIPE2 expression levels were low in eutopic and ectopic endometrium of adenomyosis patients, and TIPE2 inhibited the migration and invasion of endometrial cells, mainly by targeting β-catenin, to reverse the epithelial-mesenchymal transition (EMT). WHAT IS KNOWN ALREADY Adenomyosis is a benign disease, but it has some pathophysiological characteristics similar to the malignant tumor. TIPE2 is a novel negative immune regulatory molecule, and it also participates in the development of malignant tumors. STUDY DESIGN, SIZE, DURATION Control endometrium (n = 48 women with non-endometrial diseases) and eutopic/ectopic endometrium from patients with adenomyosis (n = 50), human endometrial cancer cell lines, and primary endometrial cells from the eutopic endometrium of adenomyosis patients were used in the study. PARTICIPANTS/MATERIALS, SETTING, METHODS The expression level of TIPE2 mRNA and protein in the eutopic/ectopic endometrial tissues of adenomyosis patients and control endometrium was determined by quantitative RT-PCR (qRT-PCR), western blot and immunohistochemistry. The effects of TIPE2 overexpression and knockdown on the proliferation, migration and invasion of endometrial cell lines and primary adenomyotic endometrial cells were determined using a cell counting kit-8, 5-ethynyl-2′-deoxyuridine assay, colony-forming assay, transwell migration assay and matrigel invasion assay. The expression of EMT-related markers and signal molecules was detected by western blot. The interaction between TIPE2 and β-catenin was detected by co-immunoprecipitation and laser confocal microscopy. MAIN RESULTS AND THE ROLE OF CHANCE The mRNA and protein expression levels of TIPE2 in the eutopic and ectopic endometrial tissues of adenomyosis patients were significantly downregulated compared with the control endometrium (P ˂ 0.01). TIPE2 could bind to β-catenin and inhibit the nuclear translocation of β-catenin, downregulate the expression of stromal cell markers, upregulate the expression of glandular epithelial cell markers, decrease the occurrence of epithelial-mesenchymal transition (EMT) and suppress the migration and invasion of endometrial cells (P ˂ 0.01). LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION In this study, the experiments were performed only in eutopic and ectopic endometrial tissues, endometrial cancer cell lines and primary adenomyotic endometrial cells. A mouse model of adenomyosis will be constructed to detect the effects of TIPE2 in vivo. WIDER IMPLICATIONS OF THE FINDINGS These results suggest that TIPE2 is involved in the development of adenomyosis, which provides a potential new diagnostic and therapeutic strategy for the treatment of adenomyosis. STUDY FUNDINGS/COMPETING INTEREST(S) This present study was supported by grants from the National Natural Science Foundation of China (81471437, 81771554), Natural Science Foundation of Shandong (ZR2018MH013), Science and technology development plan provided by Health and Family Planning Committee in Shandong (2014-25). The authors declare that they have no conflicts of interest.
Quinoa (Chenopodium quinoa Willd.) with a history of 5000 years as food is extremely rich in nutrients and bioactive compounds, including γ-aminobutyric acid (GABA), a natural four-carbon non-protein amino acid with great benefits to human health. In quinoa, GABA generally increases with the germination time, but the underlying molecular mechanism is unclear. Here, we found that the GABA content in quinoa varied significantly among 25 varieties using an automatic amino acid analyzer. Next, six varieties (three low-GABA and three high-GABA varieties) were used for further analyses. The content of GABA in six varieties all showed an increasing trend after germination. In addition, Pearson's correlation analysis showed that the changes in GABA content were closely related to the transcript level or enzyme activity of three key enzymes including glutamate decarboxylase (GAD), GABA transaminase (GABA-T), and succinate-semialdehyde dehydrogenase (SSADH) in the GABA shunt, especially GAD. Based on RNA-sequencing analysis, eight GAD genes, two GABA-T genes, one SSADH gene, nine polyamine oxidase (PAO) genes, five diamine oxidase (DAO) genes, four 4-aminobutyraldehyde dehydrogenase (BADH) genes, and three thermospermine synthase ACAULIS5 (ACL5) genes were identified. Among these, CqGAD8 and CqGABA-T2 may make a greater contribution to GABA accumulation during quinoa germination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.