A series of novel phloroglucinol derivatives were designed, synthesized, characterized spectroscopically and tested for their inhibitory activity against selected metabolic enzymes, including α-glycosidase, acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and human carbonic anhydrase I and II (hCA I and II). These compounds displayed nanomolar inhibition levels and showed K values of 1.14-3.92 nM against AChE, 0.24-1.64 nM against BChE, 6.73-51.10 nM against α-glycosidase, 1.80-5.10 nM against hCA I, and 1.14-5.45 nM against hCA II.
In the present study, human carbonic anhydrase (hCA) enzyme was purified and characterized from fresh blood human red cells by Sepharose-4B-l-tyrosine-sulfanilamide affinity gel chromatography. Secondly, a series of new tetrabromo chalcone derivatives containing 4,7-methanoisoindol-1,3-dione (2a-i) were synthesized from the addition of Br to related chalcone derivatives (1a-i). The structures of the new molecules (2a-i) were confirmed by means of H NMR, C NMR and elemental analysis. Finally, the inhibitory effects of 2a-i on CA activities were investigated using the esterase method under in vitro conditions. The compounds 2a-i exhibited excellent inhibitory effects, in the low nanomolar range, with K values in the range of 11.30-21.22 nM against hCA I and in the range of 8.21-12.86 nM against hCA II. Our findings suggest that the new compounds 2a-i have superior inhibitory effect over acetazolamide (AZA), which is used as clinical CA inhibitor, with obtained K values of 34.50 and 28.93 nM against the hCA I and II isozymes, respectively. In addition to the inhibition assays, molecular modeling approaches were implemented for prediction of the binding affinities of compounds 2a and 2c, which had the highest inhibition effects, against the hCA I and II isozymes.
Paraoxonase-1 (PON1) is an organophosphate hydrolyzer and antiatherogenic enzyme. Due to the PON1's crucial functions, inhibitors and activators of PON1 must be known for pharmacological applications. In this study, we investigated the in vitro effects of some sulfonamides compounds on human serum PON1 (hPON1). For this aim, we purified the hPON1 from human serum with high specific activity by using simple chromatographic methods, and after the purification processes, we investigated in vitro interactions between the enzyme and some sulfonamides (2-amino-5-methyl-1,3-benzenedisulfonamide, 2-chloro-4-sülfamoilaniline, 4-amino-3-methylbenzenesulfanilamide, sulfisoxazole, sulfisomidine, and 5-amino-2-methylbenzenesulfonamide). IC , K values, and inhibition types were calculated for each sulfonamide. 2-amino-5-methyl-1,3-benzenedisulfonamide and 2-chloro-4-sülfamoilaniline exhibited noncompetitive inhibition effect, whereas 4-amino-3-methylbenzenesulfanilamide, sulfisoxazole, and sulfisomidine exhibited mixed type inhibition. On the other hand, 5-amino-2-methylbenzenesulfonamide showed competitive inhibition and so molecular docking studies were performed for this compound in order to assess the probable binding mechanism into the active site of hPON1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.