Markov Random Field (MRF) modelling techniques have been recently proposed as a novel approach to probabilistic modelling for Estimation of Distribution Algorithms (EDAs). An EDA using this technique was called Distribution Estimation using Markov Random Fields (DEUM). DEUM was later extended to DEUM d . DEUM and DEUM d use a univariate model of probability distribution, and have been shown to perform better than other univariate EDAs for a range of optimization problems. This paper extends DEUM to use a bivariate model and applies it to the Ising spin glass problems. We propose two variants of DEUM that use different sampling techniques. Our experimental result show a noticeable gain in performance.
Markov Networks (also known as Markov Random Fields) have been proposed as a new approach to probabilistic modelling in Estimation of Distribution Algorithms (EDAs). An EDA employing this approach called Distribution Estimation Using Markov Networks (DEUM) has been proposed and shown to work well on a variety of problems, using a unique fitness modelling approach. Previously DEUM has only been demonstrated on univariate and bivariate complexity problems. Here we show that it can be extended to a difficult multivariate problem and is capable of accurately modelling a fitness function and locating an optimum with a very small number of function evaluations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.