Atrial fibrillation (AF) diminishes left atrial (LA) mechanical function and impairs blood flow. The latter can lead to blood stasis and increased risk of thrombus formation and stroke. We investigate this risk by studying the effects of LA flow in sinus rhythm (SR) and AF on blood coagulation dynamics.Patient-specific computational fluid dynamics (CFD) simulations were coupled with the reaction-diffusionconvection equation for thrombin. Patient LA wall motions driving the flow were reconstructed from Cine MRI data during SR and AF. 15 cardiac cycles were simulated for each patient to evaluate the likelihood of thrombus formation in the critical left atrial appendage (LAA) and right inferior pulmonary vein (RIPV) regions.The simulations showed that mean blood flow velocity in the LA cavity was substantially decreased (47%) during AF compared to SR. Specifically in LAA, mean flow velocities decreased from 0.06m/s in SR to 0.035m/s in AF, leading to enhanced thrombin generation. In the RIPV, higher mean flow velocities (0.16m/s) enabled thrombin washout through the mitral valve irrespective of SR or AF.This study proposes a novel modelling approach for quantifying the likelihood of AF-related thrombogenesis within LA and demonstrates increased risk of thrombus formation in the LAA when compared with the RIPV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.