BackgroundMultidrug drug-resistant tuberculosis (MDR-TB) is a major health problem and seriously threatens TB control and prevention efforts globally. Ethiopia is among the 30th highest TB burden countries for MDR-TB with 14% prevalence among previously treated cases. The focus of this study was on determining drug resistance patterns of Mycobacterium tuberculosis among MDR-TB suspected cases and associated risk factors.MethodsA cross-sectional study was conducted in Addis Ababa from June 2015 to December 2016. Sputum samples and socio-demographic data were collected from 358 MDR-TB suspected cases. Samples were analyzed using Ziehl-Neelsen technique, GeneXpert MTB/RIF assay, and culture using Lowenstein-Jensen and Mycobacterial growth indicator tube. Data were analyzed using SPSS version 23.ResultsA total of 226 the study participants were culture positive for Mycobacterium tuberculosis, among them, 133 (58.8%) participants were males. Moreover, 162 (71.7%) had been previously treated for tuberculosis, while 128 (56.6%) were TB/HIV co-infected. A majority [122 (54%)] of the isolates were resistant to any first-line anti-TB drugs. Among the resistant isolates, 110 (48.7%) were determined to be resistant to isoniazid, 94 (41.6%) to streptomycin, 89 (39.4%) to rifampicin, 72 (31.9%) to ethambutol, and 70 (30.9%) to pyrazinamide. The prevalence of MDR-TB was 89 (39.4%), of which 52/89 (58.4%) isolates were resistance to all five first-line drugs. Risk factors such as TB/HIV co-infection (AOR = 5.59, p = 0.00), cigarette smoking (AOR = 3.52, p = 0.045), alcohol drinking (AOR = 5.14, p = 0.001) hospital admission (AOR = 3.49, p = 0.005) and visiting (AOR = 3.34, p = 0.044) were significantly associated with MDR-TB.ConclusionsThe prevalence of MDR-TB in the study population was of a significantly high level among previously treated patients and age group of 25–34. TB/HIV coinfection, smoking of cigarette, alcohol drinking, hospital admission and health facility visiting were identified as risk factors for developing MDR-TB. Therefore, effective strategies should be designed considering the identified risk factors for control of MDR-TB.
BackgroundPrevious studies suggest the burden of pulmonary tuberculosis (PTB) in Ethiopia may be greater in university students relative to the overall population. However, little is known about the transmission dynamics of PTB among students and members of the communities surrounding university campuses in Eastern Ethiopia.MethodsA cross sectional study was conducted in Eastern Ethiopia among prevalent culture-confirmed PTB cases from university students (n = 36) and community members diagnosed at one of four hospitals (n = 152) serving the surrounding area. Drug susceptibility testing (DST) was performed on Mycobacterium tuberculosis complex (MTBC) isolates using BD Bactec MGIT 960 and molecular genotyping was performed using spoligotyping and 24-loci MIRU-VNTR. MTBC strains with Identical genotyping patterns were assigned to molecular clusters as surrogate marker for recent transmission and further contact tracing was initiated among clustered patients.ResultsAmong all study participants, four MTBC lineages and 11 sub-lineages were identified, with Ethiopia_3 (Euro-American lineage) being most common sub-lineage (29.4%) in both cohorts and associated with strain clustering (P = 0.016). We further identified 13 (8.1%) strains phylogenetically closely related to Ethiopia_3 but with a distinct Spoligotyping pattern and designated as Ethiopia_4. The clustering rate of MTBC strains was 52.9% for university students and 66.7% for community members with a Recent Transmission Index (RTI) of 17.6% and 48.4%, respectively. Female gender, urban residence, and new TB cases were significantly associated with strain clustering (P<0.05). Forty-eight (30%) of the study participants were resistant to one or more first line anti TB drugs, three patients were classified as multidrug resistant (MDR).ConclusionWe found evidence for recent transmission of PTB among Ethiopian university students and the local community in Eastern Ethiopia, mainly linked to strains classified as Ethiopia_3 sub lineage. Drug resistance didn’t have a major impact on recent transmission but comprehensive molecular surveillance in combination with drug resistance profiling of MTBC strains is desirable to better characterize TB transmission dynamics in high risk congregate living environments such as university campuses and guide regional TB control programs.
Background Molecular characterization of Mycobacterium tuberculosis (MTB) is important to understand the pathogenesis, diagnosis, treatment, and prevention of tuberculosis (TB). However, there is limited information on molecular characteristics and drug-resistant patterns of MTB in patients with extra-pulmonary tuberculosis (EPTB) in Ethiopia. Thus, this study aimed to determine the molecular characteristics and drug resistance patterns of MTB in patients with EPTB in Addis Ababa, Ethiopia. Methods This study was conducted on frozen stored isolates of EPTB survey conducted in Addis Ababa, Ethiopia. A drug susceptibility test was performed using BACTEC-MGIT 960. Species and strain identification were performed using the Geno-Type MTBC and spoligotyping technique, respectively. Data were entered into the MIRU-VNTRplus database to assess the spoligotype patterns of MTB. Analysis was performed using SPSS version 23, and participants’ characteristics were presented by numbers and proportions. Results Of 151 MTB isolates, 29 (19.2%) were resistant to at least one drug. The highest proportion of isolates was resistant to Isoniazid (14.6%) and Pyrazinamide (14.6%). Nine percent of isolates had multidrug-resistant TB (MDR-TB), and 21.4% of them had pre-extensively drug-resistant TB (pre-XDR-TB). Among the 151 MTB isolates characterized by spoligotyping, 142 (94.6%) had known patterns, while 9 (6.0%) isolates were not matched with the MIRU-VNTRplus spoligotype database. Of the isolates which had known patterns, 2% was M.bovis while 98% M. tuberculosis. Forty-one different spoligotype patterns were identified. The most frequently identified SpolDB4 (SIT) wereSIT149 (21.2%), SIT53 (14.6%) and SIT26 (9.6%). The predominant genotypes identified were T (53.6%), Central Asia Strain (19.2%) and Haarlem (9.9%). Conclusion The present study showed a high proportion of MDR-TB and pre-XDR-TB among EPTB patients. The strains were mostly grouped into SIT149, SIT53, and SIT26. The T family lineage was the most prevalent genotype. MDR-TB and pre-XDR-TB prevention is required to combat these strains in EPTB. A large scale study is required to describe the molecular characteristics and drug resistance patterns of MTB isolates in EPTB patients.
Introduction: Molecular tests allow rapid detection of Mycobacterium tuberculosis and drug resistance in a few days. Identifying the mutations in genes associated with drug resistance may contribute to the development of appropriate interventions to improve tuberculosis control. So far, there is little information in Ethiopia about the diagnostic performance of line probe assay (LPA) and the M. tuberculosis common gene mutations associated with drug resistance in extrapulmonary tuberculosis. Thus, this study aimed to assess the frequency of drug resistance-associated mutations in patients with extrapulmonary tuberculosis (EPTB) and to compare the agreement and determine the utility of the genotypic in the detection of drug resistance in Addis Ababa, Ethiopia. Methods: A cross-sectional study was conducted on stored M. tuberculosis isolates. The genotypic and phenotypic drug susceptibility tests were performed using LPA and BACTEC-MGIT-960, respectively. The common mutations were noted, and the agreement and the utility of the LPA were determined using the BACTEC-MGIT-960 as a gold standard. Results: Of the 151 isolates, the sensitivity and specificity of MTBDR plus in detecting isoniazid resistance were 90.9% and 100%, respectively. While for rifampicin, it was 100% and 99.3% for sensitivity and specificity, respectively. The katG S315Tl was the most common mutation observed in 85.7% of the isoniazid-resistant isolates. In the case of rifampicin, the most common mutation (61.9%) was observed at position rpoB S531L. Mutations in the gyrA promoter region were strongly associated with Levofloxacin and Moxifloxacin resistance. Conclusion: Line probe assay has high test performance in detecting resistance to anti-TB drugs in EPTB isolates. The MTBDR plus test was slightly less sensitive for the detection of isoniazid resistance as compared to the detection of rifampicin. The most prevalent mutations associated with isoniazid and rifampicin resistance were observed at katG S315Tl and rpoB S531L respectively. Besides, all the fluoroquinolone-resistant cases were associated with gyrA gene. Finally, a validation study with DNA sequencing is recommended.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.