Long non-coding RNAs (lncRNAs) contribute to the tumorigeneses of numerous types of cancer, including glioma. The present study was designed to unveil a novel lncRNA functioning in glioma and explore the underlying mechanisms. lncRNA titin-antisense RNA1 (TTN-AS1), miR-27b-3p and Runt-related transcription factor 1 (RUNX1) expression in glioma tissues and cell lines was estimated by RT-qPCR. Si-TTN-AS1 was transfected into glioma cell lines (U251 and LN229), and CCK-8 assay, flow cytometry, wound healing and Transwell assays were applied to estimate the function of TTN-AS1 in glioma cells. miR-27b-3p inhibitor was used to explore the mechanisms. The results revealed that TTN-AS1 was highly expressed in glioma specimens and cell lines. Downregulation of TTN-AS1 inhibited the proliferation, migration and invasion of the glioma cells, as well as increased the rate of apoptosis.
In vivo
, the tumor growth was also inhibited by TTN-AS1 depletion in nude mice. Furthermore, we revealed that TTN-AS1 exerted oncogenic effects via sponging miR-27b-3p and thereby positively regulating RUNX1 expression. In conclusion, the present study supported that TTN-AS1 acts as an oncogene in glioma by targeting miR-27b-3p to release RUNX1. This finding may contribute to gene therapy of glioma.
Background. High tibial osteotomy (HTO) is used to treat medial degeneration of the osteoarthritis (OA) knee. However, shortcomings still exist in the current procedure, like unprecise creation, inability to correct knee rotation, and internal fixed failure. Here, we reported a novel procedure: patient-specific 3D-printed plates for opening wedge high tibial osteotomy (OWHTO) combined with Taylor spatial frame (TSF). The detailed technique was described, and the clinical outcomes were evaluated. Methods. We prospectively evaluate outcomes of patient-specific 3D-printed plates for OWHTO with use of TSF in 25 patients with knee OA and varus alignment. Postoperative efficacy was evaluated using the HSS knee score, pain visual simulation score (VAS), and knee joint motion (ROM), and lower limb alignment was evaluated by measuring femorotibial angle (FTA) and hip-knee-ankle (HKA). Results and Conclusion. All patients did not experience complications such as wound infection, nerve damage, or bone amputation. 25 patients were followed up for 6–18 months. The bony union at bone amputation was achieved in 3 months after surgery, and the pain symptoms were significantly alleviated or disappeared. The VAS score was significantly reduced in 6 months after surgery compared with preoperative; the HSSS score was significantly added in 6 months after surgery compared with preoperative. The ROM of knee joint increased significantly 6 months after operation compared with that before operation, and the difference was statically significant (
P
<
0.05
). The FTA and HKA after operation were significantly superior to that before operation, and the difference was statically significant (
P
<
0.01
). Conclusions. Our study showed that patient-specific 3D-printed plates for HTO with the use of TSF have the advantages of small trauma, few complications, simple operation, and fast recovery in treating knee OA and varus alignment.
The allocation of capacity of distributed photovoltaic energy storage System has always been an urgent problem to be solved, and reasonable capacity allocation plays an important role in stabilizing the power fluctuation of PCC node and smoothing the load output. In order to reasonably configure energy storage, this paper establishes an energy storage model based on the analysis of random error, which combines load prediction error and the randomness of photovoltaic output prediction error to meet the characteristics of normal distribution, and estimates the random error not considered by the original model, so that the results calculated by the model are more accurate. Combining with the example of the Liaoning branch of China Tower, and the capacity configuration of the photovoltaic energy storage system is verified by combining its load power and photovoltaic power curve.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.