Aiming at the economic benefits, load fluctuations, and carbon emissions of the microgrid (MG) group control, a method for controlling the MG group of power distribution Internet of Things (IoT) based on deep learning is proposed. Firstly, based on the cloud edge collaborative power distribution IoT architecture, combined with distributed generation, electric vehicles (EV), and load characteristics, the MG system model in the power distribution IoT is established. Then, a deep learning algorithm is used to train the features of the data model on the edge side. Finally, the group control strategy is adopted in the power distribution cloud platform to reasonably regulate the coordinated output of multiple energy sources, adjust the load state, and realize the economic operation of the power grid. Based on the MATLAB platform, a group model of MG is built and simulated. The results show the effectiveness of the proposed control method. Compared with other methods, the proposed control method has higher income and minimum carbon emission and realizes the economic and environmental protection system operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.