Nucleosomes composed of histones are the fundamental units around which DNA is wrapped to form chromatin. Transcriptionally active euchromatin or repressive heterochromatin is regulated in part by the addition or removal of histone post-translational modifications (PTMs) by 'writer' and 'eraser' enzymes, respectively. Nucleosomal PTMs are recognised by a variety of 'reader' proteins which alter gene expression accordingly. The histone tails of the evolutionarily divergent eukaryotic parasite Trypanosoma brucei have atypical sequences and PTMs distinct from those often considered universally conserved. Here we identify 68 predicted readers, writers and erasers of histone acetylation and methylation encoded in the T. brucei genome and, by epitope tagging, systemically localize 63 of them in the parasite's bloodstream form. ChIP-seq demonstrated that fifteen candidate proteins associate with regions of RNAPII transcription initiation. Eight other proteins exhibit a distinct distribution with specific peaks at a subset of RNAPII transcription termination regions marked by RNAPIII- transcribed tRNA and snRNA genes. Proteomic analyses identified distinct protein interaction networks comprising known chromatin regulators and novel trypanosome-specific components. Notably, several SET-domain and Bromo-domain protein networks suggest parallels to RNAPII promoter-associated complexes in conventional eukaryotes. Further, we identify likely components of TbSWR1 and TbNuA4 complexes whose enrichment coincides with the SWR1-C exchange substrate H2A.Z at RNAPII transcriptional start regions. The systematic approach employed provides detail of the composition and organization of the chromatin regulatory machinery in Trypanosoma brucei and establishes a route to explore divergence from eukaryotic norms in an evolutionarily ancient but experimentally accessible eukaryote.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.