The market of biomolecules with therapeutic scopes, including peptides, is continuously expanding. The interest towards this class of pharmaceuticals is stimulated by the broad range of bioactivities that peptides can trigger in the human body. The main production methods to obtain peptides are enzymatic hydrolysis, microbial fermentation, recombinant approach and, especially, chemical synthesis. None of these methods, however, produce exclusively the target product. Other species represent impurities that, for safety and pharmaceutical quality reasons, must be removed. The remarkable production volumes of peptide mixtures have generated a strong interest towards the purification procedures, particularly due to their relevant impact on the manufacturing costs. The purification method of choice is mainly preparative liquid chromatography, because of its flexibility, which allows one to choose case-by-case the experimental conditions that most suitably fit that particular purification problem. Different modes of chromatography that can cover almost every separation case are reviewed in this article. Additionally, an outlook to a very recent continuous chromatographic process (namely Multicolumn Countercurrent Solvent Gradient Purification, MCSGP) and future perspectives regarding purification strategies will be considered at the end of this review.
Biopharmaceuticals are subjected to very strict purity requirements to be marketed. At the same time, peptides and other biomolecules are industrially synthesized through techniques (e.g., solid-phase synthesis) often leading to the formation of many impurities with molecular characteristics very similar to the target product. Therefore, the purification of these mixtures via preparative chromatography can be very challenging. This typically involves ternary or central-cut separations, characterized by chromatograms where the central peak, corresponding to the target product, exhibits significant overlapping on both sides with impurities slightly more or less adsorbable. In single-column (batch) preparative chromatography, this leads to a typical yield-purity tradeoff, meaning that high purity can be obtained at the cost of low yield and vice versa, with obvious consequences on the overall production costs. This study demonstrates how this limitation can be alleviated using the continuous countercurrent operating mode, conducted on a multicolumn system, as a tool for process intensification. In particular, the Multicolumn Countercurrent Solvent Gradient Purification (MCSGP) process has been applied to the purification of an industrial crude mixture of icatibant, which is a peptidomimetic antagonist of bradykinin B2-receptor that has been recently also considered for the treatment of patients affected by COVID-19 disease. It is shown that MCSGP allows conjugating process simplicity (using only two columns) with a significant improvement in process performance, compared to the corresponding batch process. This includes all process performance parameters: yield, productivity, and buffer consumption for a given purity specification of icatibant.
Peptides are a class of biomolecules with a great potential from the therapeutic point of view, because of their unique biological properties. Industrially, the production stategies adopted produce both the target peptide and a series of impurities that must be removed. Preparative chromatography is the technique of choice for the large-scale purification of biomolecules, generally performed in reversed-phase mode, using hydrophobic adsorbents (e.g., C8 stationary phases). A promising and innovative alternative is represented by mixed-mode columns, which bear two different ligands on the particle surface, exploiting two different retention mechanisms to improve the separation. This work represents a proof-of-concept study focused on the comparison of a hydrophobic adsorbent and a mixed-mode one (bearing both hydrophobic groups and charged ones) for the purification of a crude peptide mixture. Thanks to more-favourable thermodynamics, it was found that, when collecting the whole peak excluding fractions of the peak tail, the mixed-mode column led to an increase in the recovery of roughly +15%, together with a slight improvement in purity at the same time, with respect to the traditional hydrophobic column. In addition, if the whole peak, including the tail, is collected, the performance of the two columns are similar in terms of purity and recovery, but the pepetide elutes as a narrower peak with the mixed mode. This leads to a collection pool showing a much-higher peptide concentration and to lower solvent volumes needed, which is a beneficial achievement when targeting more sustainable processes. These results are very advantageous from the industrial viewpoint, because they also involve a decrease in the peptide amount contained in the peak tail, which must be reprocessed again to satisfy purity requirements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.