The interactions responsible for the nucleotide sequence-specific binding of the vnd/NK-2 homeodomain of Drosophila melanogaster to its consensus DNA binding site have been identified. A three-dimensional structure of the vnd/NK-2 homeodomain-DNA complex is presented, with emphasis on the structure of regions of observed protein-DNA contacts. This structure is based on protein-DNA distance restraints derived from NMR data, along with homology modeling, solvated molecular dynamics, and results from methylation and ethylation interference experiments. Helix III of the homeodomain binds in the major groove of the DNA and the N-terminal arm binds in the minor groove, in analogy with other homeodomain-DNA complexes whose structures have been reported. The vnd/NK-2 homeodomain recognizes the unusual DNA consensus sequence 5'-CAAGTG-3'. The roles in sequence specificity and strength of binding of individual amino acid residues that make contact with the DNA are described. We show, based primarily on the observed protein-DNA contacts, that the interaction of Y54 with the DNA is the major determinant of this uncommon nucleotide binding specificity in the vnd/NK-2 homeodomain-DNA complex.
The increased interest in using monoclonal antibodies (mAbs) as a platform for biopharmaceuticals has led to the need for new analytical techniques that can precisely assess physicochemical properties of these large and very complex drugs for the purpose of correctly identifying quality attributes (QA). One QA, higher order structure (HOS), is unique to biopharmaceuticals and essential for establishing consistency in biopharmaceutical manufacturing, detecting process-related variations from manufacturing changes and establishing comparability between biologic products. To address this measurement challenge, two-dimensional nuclear magnetic resonance spectroscopy (2D-NMR) methods were introduced that allow for the precise atomic-level comparison of the HOS between two proteins, including mAbs. Here, an inter-laboratory comparison involving 26 industrial, government and academic laboratories worldwide was performed as a benchmark using the NISTmAb, from the National Institute of Standards and Technology (NIST), to facilitate the translation of the 2D-NMR method into routine use for biopharmaceutical product development. Two-dimensional 1H,15N and 1H,13C NMR spectra were acquired with harmonized experimental protocols on the unlabeled Fab domain and a uniformly enriched-15N, 20%-13C-enriched system suitability sample derived from the NISTmAb. Chemometric analyses from over 400 spectral maps acquired on 39 different NMR spectrometers ranging from 500 MHz to 900 MHz demonstrate spectral fingerprints that are fit-for-purpose for the assessment of HOS. The 2D-NMR method is shown to provide the measurement reliability needed to move the technique from an emerging technology to a harmonized, routine measurement that can be generally applied with great confidence to high precision assessments of the HOS of mAb-based biotherapeutics.
The secondary structure of the homeodomain encoded by the NK-2 gene from Drosophila melanogaster, in both the free and DNA-bound states, was determined in solution using two- and three-dimensional (2D and 3D) NMR spectroscopy. Proton and 15N studies were carried out on a 77 amino acid residue protein that contains the homeodomain, which was synthesized in Escherichia coli. On the basis of NOE connectivities, vicinal coupling constants, and proton-deuterium exchange behavior, three helical segments were found that consist of homeodomain amino acid residues 10-22, 28-38, and 42-52 for the protein in the absence of DNA. The major structural differences between free NK-2 and other homeodomains are the increased internal mobility of the second helix and the shorter length of the third helix, also termed the recognition helix. Despite this shorter helix, NK-2 exhibits high-affinity binding to DNA compared to other homeodomains (kD = 2.0 x 10(-10) M; L.-H. Wang and M. Nirenberg, unpublished results). The formation of the complex of NK-2 with the duplex DNA (TGTGTCAAGTG-GCTGT) significantly increases the thermal stability of the protein. The Tm increases from 25 degrees C (free NK-2) to > 47 degrees C (DNA-bound NK-2). Also, a dramatic increase in the length of helix III is observed. In the absence of DNA, the DNA recognition helix is 11 amino acid residues long (residues 42-52), whereas in the presence of DNA, the length of this helix extends to 19 amino acids (residues 42-60).(ABSTRACT TRUNCATED AT 250 WORDS)
LP2086 is a family of outer membrane lipoproteins fromNeisseria meningitidis, which elicits bactericidal antibodies and are currently undergoing human clinical trials in a bivalent formulation where each antigen represents one of the two known LP2086 subfamilies. Here we report the NMR structure of the recombinant LP2086 variant B01, a representative of the LP2086 subfamily B. The structure reveals a novel fold composed of two domains: a "taco-shaped" N-terminal -sheet and a C-terminal -barrel connected by a linker. The structure in micellar solution is consistent with a model of LP2086 anchored to the outer membrane bilayer through its lipidated N terminus. A long flexible chain connects the folded part of the protein to the lipid anchor and acts as spacer, making both domains accessible to the host immune system. Antibodies broadly reactive against members from both subfamilies have been mapped to the N terminus. A surface of subfamily-defining residues was identified on one face of the protein, offering an explanation for the induction of subfamily-specific bactericidal antibodies.Neisseria meningitidis is a Gram-negative bacterial pathogen, which colonizes the upper respiratory tract, occasionally invading the bloodstream, causing sepsis, and crossing the blood-brain barrier, resulting in meningitis. Despite the availability of effective antibiotic treatment, the rapid progression of meningococcal disease still results in substantial morbidity and mortality (1). Five meningococcal serogroups, categorized according to the chemical structure of the bacterial capsular polysaccharides, A, B, C, Y, and W135, account for most of the disease (2). Although a vaccine against four of the five major serogroups of meningococci is currently available, a vaccine for the prevention of serogroup B disease is still an unmet clinical need (3). The development of vaccines against serogroup B meningococci has focused on subcapsular antigens, in order to avoid the risk of autoimmunity arising from structural similarities between the capsular polysaccharides and the sialic acidmodified surface of developing human brain (1,4,5).Recently, a new family of lipidated outer membrane proteins, LP2086, was identified as a potential vaccine target (6). Members of the LP2086 family have been divided into two subfamilies, subfamily A and B, based on their genetic variation (6, 7). Since recombinant LP2086 (rLP2086) 3 elicits a bactericidal response that is largely subfamily-specific, a bivalent vaccine containing one protein from each subfamily will offer protection against serogroup B meningococci (6, 8 -11). LP2086 lipoproteins are lipidated at the N-terminal Cys with a tripalmitoyl lipid tail, which anchors the protein to the bacterial membrane (12). More recently, LP2086 was found to induce serum resistance via binding with human Factor H, a key regulator of the alternative complement pathway that prevents autologous complement attack (13).Our work seeks to understand the structural elements of LP2086 responsible for inducing the subf...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.