Cyclic dimeric 3′-5′ guanosine monophosphate, c-di-GMP, is a ubiquitous second messenger controlling diverse cellular processes in bacteria. In streptomycetes, c-di-GMP plays a crucial role in a complex morphological differentiation by modulating an activity of the pleiotropic regulator BldD. Here we report that c-di-GMP plays a key role in regulating secondary metabolite production in streptomycetes by altering the expression levels of bldD. Deletion of cdgB encoding a diguanylate cyclase in Streptomycesghanaensis reduced c-di-GMP levels and the production of the peptidoglycan glycosyltransferase inhibitor moenomycin A. In contrast to the cdgB mutant, inactivation of rmdB, encoding a phosphodiesterase for the c-di-GMP hydrolysis, positively correlated with the c-di-GMP and moenomycin A accumulation. Deletion of bldD adversely affected the synthesis of secondary metabolites in S. ghanaensis, including the production of moenomycin A. The bldD-deficient phenotype is partly mediated by an increase in expression of the pleiotropic regulatory gene wblA. Genetic and biochemical analyses demonstrate that a complex of c-di-GMP and BldD effectively represses transcription of wblA, thus preventing sporogenesis and sustaining antibiotic synthesis. These results show that manipulation of the expression of genes controlling c-di-GMP pool has the potential to improve antibiotic production as well as activate the expression of silent gene clusters.
Streptomycetes are filamentous bacteria famous for their ability to produce a vast majority of clinically important secondary metabolites. Both complex morphogenesis and onset of antibiotic biosynthesis are tightly linked in streptomycetes and require series of specific signals for initiation. Cyclic dimeric 3′-5′ guanosine monophosphate, c-di-GMP, one of the well-known bacterial second messengers, has been recently shown to govern morphogenesis and natural product synthesis in Streptomyces by altering the activity of the pleiotropic regulator BldD. Here we report a role of the heme-binding diguanylate cyclase SSFG_02181 from Streptomyces ghanaensis in the regulation of the peptidoglycan glycosyltransferase inhibitor moenomycin A biosynthesis. Deletion of ssfg_02181 reduced the moenomycin A accumulation and led to a precocious sporulation, while the overexpression of the gene blocked sporogenesis and remarkably improved antibiotic titer. We also demonstrate that BldD negatively controls the expression of ssfg_02181, which stems from direct binding of BldD to the ssfg_02181 promoter. Notably, the heterologous expression of ssfg_02181 in model Streptomyces spp. arrested morphological progression at aerial mycelium level and strongly altered the production of secondary metabolites. Altogether, our work underscores the significance of c-di-GMP-mediated signaling in natural product biosynthesis and pointed to extensively applicable approach to increase antibiotic production levels in streptomycetes. Cyclic dimeric (3′ → 5′) GMP (c-di-GMP) was initially reported by Ross et al. 1 in 1987 as an allosteric activator of a bacterial cellulose synthase. Since that time, its role has been expanded to control various cellular processes including biofilm formation, planktonic to sessile state transition, cell progression and expression of virulence genes 2. Alteration of c-di-GMP intracellular levels crucially affect the life cycle of microorganisms. Two classes of enzymes with opposite activities are responsible for the c-di-GMP turnover. Diguanylate cyclases (DGCs) catalyze the synthesis of the second messenger by homodimerization, using two molecules of GTP. Their active site consists of the highly-conservative GG(D/E)EF [Gly-Gly-(Asp/Glu)-Glu-Phe] domain 3,4. Phosphodiesterases (PDEs) are responsible for c-di-GMP degradation through the catalytic EAL (Glu-Ala-Leu) domain, yielding the linear dinucleotide 5′-phosphoguanylyl-(3′ → 5′)-guanosine (pGpG) 5,6. Additionally, the less frequent PDEs containing HD-GYP (His-Asp)-(Gly-Tyr-Pro) domain hydrolyze c-di-GMP into two GMP molecules 7. Moreover, sensor domains are often associated with catalytic domains, making these proteins responsive to environmental stimuli. PAS (Per-Arnt-Sim) and GAF (mammalian cGMP-regulated PDEs, Anabaena adenylyl cyclases and Escherichia coli transcription activator FhlA) domains are the most spread among c-di-GMP metabolizing enzymes 2. Due to their high plasticity, PAS domains are able to bind a large variety of ligands, such as heme, divalent cation...
Diguanylate cyclases (DGCs) and phosphodiesterases (PDEs) are essential enzymes deputed to maintain the intracellular homeostasis of the second messenger cyclic dimeric (3′→5′) GMP (c-di-GMP). Recently, c-di-GMP has emerged as a crucial molecule for the streptomycetes life cycle, governing both morphogenesis and secondary metabolite production. Indeed, in Streptomyces ghanaensis ATCC14672 c-di-GMP was shown to be involved in the regulatory cascade of the peptidoglycan glycosytransferases inhibitor moenomycin A (MmA) biosynthesis. Here, we report the role of four c-di-GMP-metabolizing enzymes on MmA biosynthesis as well as morphological progression in S. ghanaensis. Functional characterization revealed that RmdAgh and CdgAgh are two active PDEs, while CdgEgh is a DGC. In vivo, overexpression of rmdAgh and cdgAgh led to precocious sporulation, whereas overexpression of cdgEgh and cdgDgh (encoding a predicted DGC) caused an arrest of morphological development. Furthermore, we demonstrated that individual deletion of rmdAgh, cdgAgh, and cdgDgh enhances MmA accumulation, whereas deletion of cdgEgh has no impact on antibiotic production. Conversely, an individual deletion of each studied gene does not affect morphogenesis. Altogether, our results show that manipulation of c-di-GMP-metabolizing enzymes represent a useful approach to improving MmA production titers in S. ghanaensis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.