This study aims to analyze consumer purchasing patterns for motorcycle parts using data mining methods and FP-Growth algorithms on motorcycle parts sales transaction data. This research aims to obtain helpful information for companies in planning marketing strategies and increasing sales. The data used in this study are motorcycle parts sales transaction data from motorcycle parts stores for one year. The data is then processed using the FP-Growth algorithm to find significant purchasing patterns. The results of this study show that the FP-Growth algorithm can be used to identify substantial consumer purchasing patterns. Some purchase patterns found include a combination of often purchased products, the most active purchase time, and the most purchased product category. Using data mining and the FP-Growth algorithm can assist companies in understanding significant consumer purchasing patterns to improve the effectiveness of marketing strategies and increase sales of motorcycle parts. The novelty of this research lies in using data mining methods and FP-Growth algorithms on motorcycle parts sales transaction data to analyze consumer purchasing patterns. This research also provides valuable information for companies in planning marketing strategies and increasing sales by identifying significant consumer purchasing patterns, such as product combinations often purchased together and the most purchased product categories.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.