Since plant growth in the boreal forest is often considered to be limited by low temperatures and low N availability and these variables are projected to increase due to climate warming and increased anthropogenic activities, it is important to understand whether and to what extent these disturbances may affect the growth of boreal trees. In this study, the hypotheses that wood phenology and anatomy were affected by increased soil temperatures and N depositions have been tested in two mature black spruce ( Picea mariana (Mill.) BSP) stands at different altitudes in Quebec, Canada. For 3 years, soil temperature was increased by 4 °C during the first part of the growing season and precipitations containing three times the current N concentration were added in the field by frequent canopy applications. Soil warming resulted in earlier onsets of xylogenesis and interacted with N addition producing longer durations of xylogenesis for the treated trees. The effect of warming was especially marked in the phenology of roots, while wood production, in terms of number of tracheids, was not affected by the treatment. Xylem anatomy and soil and needle chemistry showed no effect of the treatments, except for an increase of cell wall thickness in earlywood of treated trees. This short-term experiment with black spruce suggested that previous fertilization studies that used large and unrealistic rates of N addition may have overestimated the impact of N depositions on boreal forest productivity.
The predicted climate warming and more frequent and longer droughts are expected to produce potentially severe water stresses in the boreal forest. The aim of this experiment was to study the effect of a summer drought on xylem phenology and anatomy of mature black spruce ( Picea mariana (Mill.) BSP) trees in their natural environment. The trees were excluded from rain during June–September 2010 by the installation of under-canopy roofs in four sites of the boreal forest of Quebec. Xylem phenology, stem radius variations, and physiological traits of treated and control trees were monitored at short time resolution. At the end of the growth season, cell characteristics were measured. The rain exclusion reduced the cell area of the xylem, but no significant change was observed in cell wall thickness, cell production, or phenology. Stem radius variations of the treated trees were lower but followed the same pattern as the control. After removal of the exclusion, trees and soil quickly recovered their normal water status. One summer of drought led to the formation of smaller tracheids but showed that black spruce is resistant to this rain exclusion treatment. This is likely due to the ability to collect water from sources other than the superficial soil horizon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.