Certain transcription factors are proposed to form functional interactions with RNA to facilitate proper regulation of gene expression. Sox2, a transcription factor critical for maintenance of pluripotency and neurogenesis, has been found associated with several lncRNAs, although it is unknown whether these interactions are direct or via other proteins. Here we demonstrate that human Sox2 interacts directly with one of these lncRNAs with high affinity through its HMG DNA-binding domain in vitro. These interactions are primarily with double-stranded RNA in a non-sequence specific fashion, mediated by a similar but not identical interaction surface. We further determined that Sox2 directly binds RNA in mouse embryonic stem cells by UV-cross-linked immunoprecipitation of Sox2 and more than a thousand Sox2-RNA interactions in vivo were identified using fRIP-seq. Together, these data reveal that Sox2 employs a high-affinity/low-specificity paradigm for RNA binding in vitro and in vivo.
Synaptotagmin (Syt) family proteins contain tandem C2 domains, C2A and C2B, which insert into anionic membranes in response to increased cytosolic Ca concentration and facilitate exocytosis in neuronal and endocrine cells. The C2A domain from Syt7 binds lipid membranes much more tightly than the corresponding domain from Syt1, but the implications of this difference for protein function are not yet clear. In particular, the ability of the isolated Syt7 C2A domain to initiate membrane apposition and/or aggregation has been previously unexplored. Here, we demonstrate that Syt7 C2A induces apposition and aggregation of liposomes using Förster resonance energy transfer (FRET) assays, dynamic light scattering, and spectroscopic techniques involving lipid-coated gold nanoparticles (LCAuNPs). Protein-membrane binding, membrane apposition, and macroscopic aggregation are three separate phenomena with distinct Ca requirements: the threshold Ca concentration for membrane binding is lowest, followed by apposition and aggregation. However, aggregation is highly sensitive to protein concentration and can occur even at submicromolar Syt7 C2A; thus, highly sensitive assays are needed for measuring apposition without complications arising from aggregation. Notably, the localized surface plasmon resonance of the LCAuNP is sensitive to ≤10 nM Syt7 C2A concentrations. Furthermore, when the LCAuNPs were added into a FRET-based liposome apposition assay, the resultant energy transfer increased; possible explanations are discussed. Overall, LCAuNP-based methods allow for highly sensitive detection of protein-induced membrane apposition under conditions that miminize large-scale aggregation.
There is a growing body of evidence that a substantial number of protein domains identified as DNA-binding also interact with RNA to regulate biological processes. Several recent studies have revealed that the Sox2 transcription factor binds RNA through its high-mobility group box (HMGB) domain in vitro and in vivo. A high degree of conservation of this domain among members of the Sox family of transcription factors suggests that RNA-binding activity may be a general feature of these proteins. To address this hypothesis, we examined a subset of HMGB domains from human Sox family of proteins for their ability to bind both DNA and RNA in vitro. We observed selective, high-affinity interactions between Sox family HMGB domains and various model RNA elements, including a four-way junction RNA, a hairpin RNA with an internal bulge, G-quadruplex RNA, and a fragment of long noncoding RNA ES2, which is known to directly interact with Sox2. Importantly, the HMGB domains bind these RNA ligands significantly tighter than nonconsensus dsDNA and in some cases with affinities rivaling those of their consensus dsDNA sequences. These data suggest that RNA binding is a conserved feature of the Sox family of transcription factors with the potential to modulate unappreciated biological functions.
Gold nanoparticles (GNPs) have a wide range of properties with potential applications in electronics, optics, catalysis, and sensing. In order to demonstrate that dense, stable, and portable samples could be created for these applications, multiple layers of GNPs were assembled via drop casting on glass substrates by layer-by-layer (LBL) techniques. Two cationic polyelectrolytes, poly(diallyldimethylammonium chloride) and polyethyleneimine, one anionic polyelectrolyte, poly(sodium 4-styrene sulfonate), and one neutral polymer, polyvinylpyrrolidone, were combined with four different shapes of GNPs (spherical, rod, triangular prismatic, and octahedral) to prepare thin films. A subset of these polymer nanoparticle combinations were assembled into thin films. Synthesized GNPs were characterized via dynamic light scattering, UV-vis spectroscopy, and transmission electron microscopy and the LBL thin films were characterized using UV-vis spectroscopy and atomic force microscopy. Sensing applications of the nanoparticles in solution and thin films were tested by monitoring the localized surface plasmon resonance of the GNPs. LBL thin films were prepared ranging from 25 to 100 layers with optical densities at plasmon from 0.5 to 3.0. Sensitivity in solutions ranged from 14 to 1002 nm/RIU and films ranged from 18.8 to 135.1 nm/RIU suggesting reduced access to the GNPs within the films.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.