Despite the ecological and economic importance of lignin and other wood chemical components, there are few studies of the natural genetic variation that exists within plant species and its adaptive significance. We used models developed from near infra-red spectroscopy to study natural genetic variation in lignin content and monomer composition (syringyl-to-guaiacyl ratio [S/G]) as well as cellulose and extractives content, using a 16-year-old field trial of an Australian tree species, Eucalyptus globulus. We sampled 2163 progenies of 467 native trees from throughout the native geographic range of the species. The narrow-sense heritability of wood chemical traits (0.25–0.44) was higher than that of growth (0.15), but less than wood density (0.51). All wood chemical traits exhibited significant broad-scale genetic differentiation (QST = 0.34–0.43) across the species range. This differentiation exceeded that detected with putatively neutral microsatellite markers (FST = 0.09), arguing that diversifying selection has shaped population differentiation in wood chemistry. There were significant genetic correlations among these wood chemical traits at the population and additive genetic levels. However, population differentiation in the S/G ratio of lignin in particular was positively correlated with latitude (R2 = 76%), which may be driven by either adaptation to climate or associated biotic factors.
Genetic parameters for stem diameter and wood density were compared at selection (4-5 years) and harvest (16-17 years) age in an open-pollinated progeny trial of Eucalyptus globulus in Tasmania (Australia). The study examined 514 families collected from 17 subraces of E. globulus. Wood density was assessed on a subsample of trees indirectly using pilodyn penetration at both ages and directly by core basic density at harvest age. Significant additive genetic variance and narrow-sense heritabilities (h 2 op ) were detected for all traits. Univariate and multivariate estimates of heritabilities were similar for each trait except harvest-age diameter. Comparable univariate estimates of selection-and harvest-age heritabilities for diameter masked changes in genetic architecture that occurred with stand development, whereby the loss of additive genetic variance through size-dependent mortality was countered by the accentuation of additive genetic differences among survivors with age. Regardless, the additive genetic (r a ) and subrace (r s ) correlations across ages were generally high for diameter (0.95 and 0.61, respectively) and pilodyn penetration (0.77 and 0.96), as were the correlations of harvestage core basic density with selection-and harvest-age pilodyn (r a −0.83, −0.88; r s −0.96, −0.83). While r s between diameter and pilodyn were close to zero at both ages, there was a significant change in r a from adverse at selection age (0.25) to close to zero (−0.07) at harvest age. We argue that this change in the genetic correlation reflects a decoupling of the genetic association of growth and wood density with age. This result highlights the need to validate the use of selection-age genetic parameters for predicting harvest-age breeding values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.