A combination of in vitro biochemical assays and in vivo differential synergism studies using PBO and a close analogue EN 16/5-1 suggests that the mechanism conferring increased resistance in this clone is primarily due to enhanced oxidase activity.
Using examples of resistant insects with well-characterised resistance mechanisms, a combination of PBO and analogue allows identification of the metabolic mechanism responsible for conferring resistance. The relative potency of PBO as both an esterase inhibitor and an oxidase inhibitor is also discussed.
Differential synergism has enabled the characterisation of pyrethroid resistance in populations of M. aeneus. It was found to be principally due to an oxidative-based mechanism, and, if a synergist were to be used to inhibit this enzyme group, renewed control against resistant pests could be achieved.
PBO binds with E4 to accelerate small substrates to the active-site triad, while acting as a blockade to larger, insecticidal molecules. Structure-activity studies with analogues of PBO also reveal the essential chemical moieties present in the molecule.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.