Heat shock protein 70 (HSP70) chaperones play a central role in protein quality control and are crucial for many cellular processes, including protein folding, degradation, and disaggregation. Human HSP70s compose a family of 13 members that carry out their functions with the aid of even larger families of co-chaperones. A delicate interplay between HSP70s and co-chaperone recruitment is thought to determine substrate fate, yet it has been generally assumed that all Hsp70 paralogs have similar activities and are largely functionally redundant. However, here we found that when expressed in human cells, two highly homologous HSP70s, HSPA1A and HSPA1L, have opposing effects on cellular handling of various substrates. For example, HSPA1A reduced aggregation of the amyotrophic lateral sclerosis–associated protein variant superoxide dismutase 1 (SOD1)–A4V, whereas HSPA1L enhanced its aggregation. Intriguingly, variations in the substrate-binding domain of these HSP70s did not play a role in this difference. Instead, we observed that substrate fate is determined by differential interactions of the HSP70s with co-chaperones. Whereas most co-chaperones bound equally well to these two HSP70s, Hsp70/Hsp90-organizing protein (HOP) preferentially bound to HSPA1L, and the Hsp110 nucleotide-exchange factor HSPH2 preferred HSPA1A. The role of HSPH2 was especially crucial for the HSPA1A-mediated reduction in SOD1-A4V aggregation. These findings reveal a remarkable functional diversity at the level of the cellular HSP70s and indicate that this diversity is defined by their affinities for specific co-chaperones such as HSPH2.
Two different mutated forms of BRI2 protein are linked with familial British and Danish dementias, which present neuropathological similarities with Alzheimer's disease. BRI2 is a type II transmembrane protein that is trafficked through the secretory pathway to the cell surface and is processed by furin and ADAM10 (a disintegrin and metalloproteinase domain 10) to release secreted fragments of unknown function. Its apparent molecular mass (42-44 kDa) is significantly higher than that predicted by the number and composition of amino acids (30 kDa) suggesting that BRI2 is glycosylated. In support, bioinformatics analysis indicated that BRI2 bears the consensus sequence Asn-Thr-Ser (residues 170-173) and could be N-glycosylated at Asn170. Given that N-glycosylation is considered essential for protein folding, processing and trafficking, we examined whether BRI2 is N-glycosylated. Treatment of HEK293 (human embryonic kidney) cells expressing BRI2 with the N-glycosylation inhibitor tunicamycin or mutation of Asn170 to alanine reduced its molecular mass by ~2 kDa. These data indicate that BRI2 is N-glycosylated at Asn170. To examine the effect of N-glycosylation on BRI2 trafficking at the cell surface, we performed biotinylation and (35)S methionine pulse-chase experiments. These experiments showed that mutation of Asn170 to alanine reduced BRI2 trafficking at the cell surface and its steady state levels at the plasma membrane. Furthermore, we obtained data indicating that this mutation did not affect cleavage of BRI2 by furin or ADAM10. Our results confirm the theoretical predictions that BRI2 is N-glycosylated at Asn170 and show that this post-translational modification is essential for its expression at the cell surface but not for its proteolytic processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.