Cancer treatment has been transformed by checkpoint blockade therapies, with the highest anti-tumor activity of anti-programmed death 1 (PD-1) antibody therapy seen in Hodgkin lymphoma (HL). Disappointingly, response rates have been low in the non-Hodgkin lymphomas (NHLs), with no activity seen in relapsed/refractory (R/R) chronic lymphocytic leukemia (CLL) with PD-1 blockade. Thus, identifying more powerful combination therapy is required for these patients. Here, we pre-clinically demonstrate enhanced anti-CLL activity following combinational therapy with anti-PD-1 or anti-PD-1 ligand (PD-L1) and avadomide, a cereblon E3 ligase modulator (CELMoD). Avadomide induced type I and II interferon (IFN) signaling in patient T cells, triggering a feedforward cascade of reinvigorated T cell responses. Immune modeling assays demonstrated that avadomide stimulated T cell activation, chemokine expression, motility and lytic synapses with CLL cells, as well as IFN-inducible feedback inhibition through upregulation of PD-L1. Patient-derived xenograft tumors treated with avadomide were converted to CD8+ T cell-inflamed tumor microenvironments (TMEs) that responded to anti-PD-L1/PD-1-based combination therapy. Notably, clinical analyses showed increased PD-L1 expression on T cells, as well as intratumoral expression of chemokine signaling genes in B cell malignancy patients receiving avadomide-based therapy. These data illustrate the importance of overcoming a low inflammatory T cell state to successfully sensitize CLL to checkpoint blockade-based combination therapy.
Summary Chemotherapy plus rituximab has been the mainstay of treatment for follicular lymphoma ( FL ) for two decades but is associated with immunosuppression and relapse. In phase 2 studies, lenalidomide combined with rituximab (R 2 ) has shown clinical synergy in front‐line and relapsed/refractory FL . Here, we show that lenalidomide reactivated dysfunctional T and Natural Killer ( NK ) cells ex vivo from FL patients by enhancing proliferative capacity and T‐helper cell type 1 (Th1) cytokine release. In combination with rituximab, lenalidomide improved antibody‐dependent cellular cytotoxicity in sensitive and chemo‐resistant FL cells, via a cereblon‐dependent mechanism. While single‐agent lenalidomide and rituximab increased formation of lytic NK cell immunological synapses with primary FL tumour cells, the combination was superior and correlated with enhanced cytotoxicity. Immunophenotyping of FL patient samples from a phase 3 trial revealed that R 2 treatment increased circulating T‐ and NK ‐cell counts, while R‐chemotherapy was associated with reduced cell numbers. Finally, using an in vitro model of myeloid differentiation, we demonstrated that lenalidomide caused a reversible arrest in neutrophil maturation that was distinct from a cytotoxic chemotherapeutic agent, which may help explain the lower rates of neutropenia observed with R 2 versus R‐chemotherapy. Taken together, we believe these data support a paradigm shift in the treatment of FL – moving from combination immunochemotherapy to chemotherapy‐free immunotherapy.
Chronic lymphocytic leukemia (CLL) stereotyped subsets #6 and #8 include cases expressing unmutated B cell receptor immunoglobulin (BcR IG) (U‐CLL). Subset #6 (IGHV1‐69/IGKV3‐20) is less aggressive compared to subset #8 (IGHV4‐39/IGKV1(D)‐39) which has the highest risk for Richter's transformation among all CLL. The underlying reasons for this divergent clinical behavior are not fully elucidated. To gain insight into this issue, here we focused on epigenomic signatures and their links with gene expression, particularly investigating genome‐wide DNA methylation profiles in subsets #6 and #8 as well as other U‐CLL cases not expressing stereotyped BcR IG. We found that subset #8 showed a distinctive DNA methylation profile compared to all other U‐CLL cases, including subset #6. Integrated analysis of DNA methylation and gene expression revealed significant correlation for several genes, particularly highlighting a relevant role for the TP63 gene which was hypomethylated and overexpressed in subset #8. This observation was validated by quantitative PCR, which also revealed TP63 mRNA overexpression in additional nonsubset U‐CLL cases. BcR stimulation had distinct effects on p63 protein expression, particularly leading to induction in subset #8, accompanied by increased CLL cell survival. This pro‐survival effect was also supported by siRNA‐mediated downregulation of p63 expression resulting in increased apoptosis. In conclusion, we report that DNA methylation profiles may vary even among CLL patients with similar somatic hypermutation status, supporting a compartmentalized approach to dissecting CLL biology. Furthermore, we highlight p63 as a novel prosurvival factor in CLL, thus identifying another piece of the complex puzzle of clinical aggressiveness.
If citing, it is advised that you check and use the publisher's definitive version for pagination, volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are again advised to check the publisher's website for any subsequent corrections.
Cancers, including lymphomas, develop in complex tissue environments where malignant cells actively promote the creation of a pro-tumoral niche that suppresses effective anti-tumor effector T cell responses. Research is revealing that the tumor microenvironment (TME) differs between different types of lymphoma, covering inflamed environments, as exemplified by Hodgkin lymphoma, to non-inflamed TMEs as seen in chronic lymphocytic leukemia (CLL) or diffuse-large B-cell lymphoma (DLBCL). In this review we consider how T cells and interferon-driven inflammatory signaling contribute to the regulation of anti-tumor immune responses, as well as sensitivity to anti-PD-1 immune checkpoint blockade immunotherapy. We discuss tumor intrinsic and extrinsic mechanisms critical to anti-tumor immune responses, as well as sensitivity to immunotherapies, before adding an additional layer of complexity within the TME: the immunoregulatory role of non-hematopoietic stromal cells that co-evolve with tumors. Studying the intricate interactions between the immune-stroma lymphoma TME should help to design next-generation immunotherapies and combination treatment strategies to overcome complex TME-driven immune suppression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.