Blockchain is a distributed ledger technology poised to transform the accounting practice. In this paper, we provide an initial examination of the technology itself and discuss the associated opportunities and limitations. We also present an overview of the current blockchain-related practices in large accounting firms and trace significant milestones in this technology's emergence. Finally, we discuss some potential areas that future research could address.
We explicitly characterize the robust counterpart of a linear programming problem with uncertainty set described by an arbitrary norm. Our approach encompasses several approaches from the literature and provides guarantees for constraint violation under probabilistic models that allow arbitrary dependencies in the distribution of the uncertain coe cients.
We propose a unified theory that links uncertainty sets in robust optimization to risk measures in portfolio optimization. We illustrate the correspondence between uncertainty sets and some popular risk measures in finance, and show how robust optimization can be used to generalize the concepts of these measures. We also show that by using properly defined uncertainty sets in robust optimization models, one can in fact construct coherent risk measures. Our approach to creating coherent risk measures is easy to apply in practice, and computational experiments suggest that it may lead to superior portfolio performance. Our results have implications for efficient portfolio optimization under different measures of risk.
Value-at-Risk (VaR) is one of the most widely accepted risk measures in the financial and insurance industries, yet efficient optimization of VaR remains a very difficult problem. We propose a computationally tractable approximation method for minimizing the VaR of a portfolio based on robust optimization techniques. The method results in the optimization of a modified VaR measure, Asymmetry-Robust VaR (ARVaR), that takes into consideration asymmetries in the distributions of returns and is coherent, which makes it desirable from a financial theory perspective. We show that ARVaR approximates the Conditional VaR of the portfolio as well. Numerical experiments with simulated and real market data indicate that the proposed approach results in lower realized portfolio VaR, better efficient frontier, and lower maximum realized portfolio loss than alternative approaches for quantile-based portfolio risk minimization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.