Understanding the Tibetan Plateau’s palaeogeography and palaeoenvironment is critical for reconstructing Asia’s climatic history; however, aspects of the plateau’s uplift history remain unclear. Here, we report a fossil biota that sheds new light on these issues. It comprises a fossil climbing perch (Anabantidae) and a diverse subtropical fossil flora from the Chattian (late Oligocene) of central Tibet. The fish, Eoanabas thibetana gen. et sp. nov., is inferred to be closely related to extant climbing perches from tropical lowlands in south Asia and sub-Saharan Africa. It has osteological correlates of a labyrinth organ, which in extant climbing perches gives them the ability to breathe air to survive warm, oxygen-poor stagnant waters or overland excursion under moist condition. This indicates that Eoanabas likewise lived in a warm and humid environment as suggested by the co-existing plant assemblage including palms and golden rain trees among others. As a palaeoaltimeter, this fossil biota suggests an elevation of ca. 1,000 m. These inferences conflict with conclusions of a high and dry Tibet claimed by some recent and influential palaeoaltimetry studies. Our discovery prompts critical re-evaluation of prevailing uplift models of the plateau and their temporal relationships with the Cenozoic climatic changes.
The crop is characteristic of seed-eating birds today, yet little is known about its early history despite remarkable discoveries of many Mesozoic seed-eating birds in the past decade. Here we report the discovery of some early fossil evidence for the presence of a crop in birds. Two Early Cretaceous birds, the basal ornithurine Hongshanornis and a basal avian Sapeornis , demonstrate that an essentially modern avian digestive system formed early in avian evolution. The discovery of a crop in two phylogenetically remote lineages of Early Cretaceous birds and its absence in most intervening forms indicates that it was independently acquired as a specialized seed-eating adaptation. Finally, the reduction or loss of teeth in the forms showing seed-filled crops suggests that granivory was possibly one of the factors that resulted in the reduction of teeth in early birds.
Scattered with numerous salt lakes and Ϸ2,700 -3,200 m above sea level, the giant Qaidam inland basin on the northern Tibetan Plateau has experienced continuing aridification since the beginning of the Late Cenozoic as a result of the India-Asia plate collision and associated uplift of the Tibetan Plateau. Previous evidence of aridification comes mainly from evaporite deposits and salinitytolerant invertebrate fossils. Vertebrate fossils were rare until recent discoveries of abundant fish. Here, we report an unusual cyprinid fish, Hsianwenia wui, gen. et sp. nov., from Pliocene lake deposits of the Qaidam Basin, characterized by an extraordinarily thick skeleton that occupied almost the entire body. Such enormous skeletal thickening, apparently leaving little room for muscles, is unknown among extant fish. However, an almost identical condition occurs in the much smaller cyprinodontid Aphanius crassicaudus (Cyprinodonyiformes), collected from evaporites exposed along the northern margins of the Mediterranean Sea during the Messinian desiccation period. H. wui and A. crassicaudus both occur in similar deposits rich in carbonates (CaCO 3) and sulfates (CaSO 4), indicating that both were adapted to the extreme conditions resulting from the aridification in the two areas. The overall skeletal thickening was most likely formed through deposition of the oversaturated calcium and was apparently a normal feature of the biology and growth of these fish.I ncreasing evidence ascribes a profound climatic shift, such as Asian monsoon systems and widespread aridification, to the uplift of the Tibetan Plateau caused by the India-Asia plate collision during the Late Cenozoic. The cyprinid fish reported here ( Fig. 1) are from the lacustrine deposits of the Pliocene Shizigou Formation in the northeastern wing of Yahu Anticline, Qaidam Basin, northern Tibetan Plateau (1) [ Fig. 2A and for more details see supporting information (SI) Fig. S1], collected from 20 localities in a 220-m-thick sequence of siltstones, fine sandstones, and marls under a marker bed, Horizon K (2) (Fig. 2B). The deposits are rich in carbonates (CaCO3) and sulfates (CaSO4). The unusually thick-boned fish represents an adaptive mode unknown in any extant fish and extremely rare in fossils. Based on this fossil fish, our morphological description and cladistic analysis shed light on schizothoracin phylogeny. We also suggest that the overall skeletal thickening was formed through deposition of the oversaturated calcium and reflects the fish's dramatic physiological adjustment to severe environmental distress. The fish thus witnessed the process of aridification and provided a convincing link between environmental changes on the Tibetan Plateau and biological responses of its inhabitants. Holotype. Nearly complete skeleton, only with posterior part of the caudal fin and a small anterodorsal portion of the body missing, IVPP V 15244, from locality CD0649, Fig. 3 A-C. Included material. V 15012, nearly complete skeleton with the tail, a short portion between the...
The septomaxilla is a paired intramembranous ossification in the external nares that occurs in Lepidosauria among Recent Sauropsida and is purported to be present in Monotremata and Dasypodidae (armadillos) among Recent Mammalia. A review of neontological and palaeontological evidence regarding this element in mammals supports the following conclusions: (1) monotremes have a true septomaxilla resembling that known for non‐mammalian therapsids and some Mesozoic mammals; (2) the element in dasypodids is a neomorph; it neither resembles the septomaxilla of other synapsids nor does it exhibit the same relationship to the developing nasal‐floor cartilage as the septomaxilla of lepidosaurs and monotremes; (3) a septomaxilla is lacking in all Recent therians, and there is no evidence that this bone is fused to the premaxilla in Recent therians, as has been suggested by previous authors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.