BackgroundRecent evidence reveals that the inflammatory microenvironment is associated with tumor migration, invasion, and metastasis. Tumor necrosis factor-α (TNF-α) play a vital role in regulation of the inflammatory process in tumor development. Nuclear factor-kappa B (NF-κB) is one of the key transcription factors which regulate processes in tumor promotion. The aim of this study was to explore the role of NF-κB on the invasion and migration of oral squamous cell carcinoma (OSCC).Material/MethodsThe IKKβ and p65 mRNA and protein levels were determined by quantitative RT-PCR and western blot. Wound scratch healing assays and transwell migration assays were used to evaluate the effect of TNF-α and BAY11-7082 on the migration of the OSCC cell lines (HN4, HN6, and CAL27).ResultsWe observed a significant increase of the expression level of IKKβ and p65 in OSCC cells from the experimental group at 24 h, 48 h, and 72 h after TNF-α stimulation. Invasion and metastasis of OSCC cells was obviously improved after the TNF-α stimulation. Invasion and metastasis ability of OSCC cells was inhibited in the suppression group, and no significant changes were observed in expression level of IKKβ and p65 after the use of BAY11-7082.ConclusionsOur results suggest that TNF-α enhances the invasion and metastasis ability of OSCC cells via the NF-κB signaling pathway.
BackgroundHyaluronan synthases (HAS) control the biosynthesis of hyaluronan (HA) and critically modulate the tumor microenviroment. Cancer-associated fibroblasts (CAFs) affect the progression of a tumor by remolding the matrix. However, little is known about the role of HAS from CAFs in this process. This study aimed to determine the role of hyaluronan synthase 2 (HAS2) from CAFs in the progression of oral squamous cell carcinoma (OSCC) invasion.MethodsHAS isoforms 1, 2, and 3 in paired sets of CAFs and normal fibroblasts (NFs) were examined by real-time PCR, and the expression of HAS2 and α-SMA in OSCC tissue sections was further evaluated using immunohistochemical staining. Furthermore, we used a conditioned culture medium model to evaluate the effects of HAS2 from CAFs on the invasion and epithelial-mesenchymal transition (EMT) of the oral cancer cells Cal27. Finally, we compared the expression of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) between CAFs and NF, and between CAFs with or without HAS2 knockdown using an antibody array and western blotting.ResultsCAFs expressed higher levels of HAS2 than the paired NFs. HAS2 expression was consistent with α-SMA-positive myofibroblasts in the stroma of OSCC, and these were significantly correlated advanced clinical stages and cervical lymph node metastasis. Knocking down HAS2 with a specific siRNA or treatment with a HAS inhibitor markedly attenuated CAF-induced invasion and EMT of Cal27 cells. Higher MMP1 and lower TIMP1 levels were detected in the supernatants of CAFs relative to NFs. Knocking down HAS2 could decrease the expression of MMP1 and increase that of TIMP1 in CAFs.ConclusionsHAS2 is one of the key regulators responsible for CAF-mediated OSCC progression and acts by modulating the balance of MMP1 and TIMP1.Electronic supplementary materialThe online version of this article (doi:10.1186/s13046-016-0458-0) contains supplementary material, which is available to authorized users.
Despite therapeutic advancements, there has been little improvement in the survival status of patients with oral squamous cell carcinoma (OSCC). HOX antisense intergenic RNA (HOTAIR) has been shown to be dysregulated in several cancer types. However, the roles of HOTAIR in OSCC remain largely unknown. In this study, we investigated the association of HOTAIR expression with clinicopathological features in OSCC patients and the crucial roles of HOTAIR in the modulation of tumor progression. Our results showed that HOTAIR was highly expressed both in OSCC tissue samples and cell lines compared with corresponding normal oral mucosa tissues and human oral keratinocytes. Its overexpression was positively correlated with TNM (tumor‐node‐metastases) stage, histological grade, and regional lymph node metastasis. The knockdown of HOTAIR by short hairpin RNA significantly decreased the migration, invasion, and epithelial‐mesenchymal transition of OSCC cells in vitro. Moreover, there was a negative correlation between HOTAIR and microRNA‐326 expression in OSCC tissue samples and cell lines. Luciferase reporter and loss‐of‐function assays revealed that HOTAIR acted as a competitive endogenous RNA effectively sponging miR‐326, thereby regulating the derepression of metastasis‐associated gene 2 (MTA2). Finally, the expression and clinical significance of MTA2 were analyzed in another cohort of OSCC tissue samples. High MTA2 expression was significantly correlated with clinicopathological features of advanced OSCC and poor prognosis for patients with OSCC. Collectively, HOTAIR overexpression promoted the progression of OSCC. The HOTAIR–miR‐326‐MTA2 axis may contribute to a better understanding of OSCC pathogenesis and be a potential therapeutic target for OSCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.