The transition from incoherent to coherent buoyancy‐driven gas flow is investigated in two‐dimensional tanks filled with glass beads using a high‐resolution optical‐gravimetrical setup. Both a grain‐size (dk)‐ and flow rate (Q)‐dependent transition are observed in the gas flow pattern. Standard quasistatic criteria do not explain the experimental results, since they do not take into account the competition between stabilizing friction forces and destabilizing capillary and gravitational forces. Conceptualizing the steady state tortuous gas flow as core‐annulus flow and applying Hagen‐Poiseuille flow for a straight capillary, we propose a flow rate and grain‐size‐dependent stability criterion that accounts for the experimental results and is used to classify the experiments in a dk‐Q diagram.
[1] Gas tracer experiments were carried out in dynamically compressed sediments to investigate the mass transfer between a trapped multicomponent gas phase and a mobile water phase. The saturation state of the column was characterized by three independent methods: (1) by gravimetric measurements, (2) by bromide tracer tests, and (3) by hydraulic conductivity measurements. For inverse modeling a new kinetic model was developed allowing volume change of the entrapped gas. The new kinetic model consistently explains oxygen elution curves, the time evolution of the integral gas saturation, and integral hydraulic conductivity. The sensitivity of three different velocity-dependent mass transfer correlations to the dissolution process was investigated: (1) a classical square-root, single-sphere correlation, Sh $ Pe 0.5 , (2) a multisphere correlation, Sh $ Pe n (n = 0.5-1.0), and (3) an empirical correlation, Sh $ Pe 0.8 . It was found that all correlations yield nearly the same elution curves for 10 gas tracer experiments with three different two-component gas phases: O 2 /He, O 2 /N 2 , and O 2 /Ar and for different flow velocities ranging from 5 to 20 m d À1 . For all gas tracer experiments a distinct minimum of the longitudinal dispersivity was found during gas dissolution, i.e., in the unsaturated state. For the saturated state we found that the experimental values could be described by Saffman's theory:D p / Pe ln (Pe) with a normalized mean square root error of 6%.Citation: Geistlinger, H., A. Beckmann, and D. Lazik (2005), Mass transfer between a multicomponent trapped gas phase and a mobile water phase: Experiment and theory, Water Resour. Res., 41, W11408,
[1] High-resolution optical bench-scale experiments were conducted in order to investigate local gas flow pattern and integral flow properties caused by point-like gas injection into water-saturated glass beads. The main goal of this study was to test the validity of the continuum approach for two-fluid flow in macroscopic homogeneous media. Analyzing the steady state experimental gas flow pattern that satisfies the necessary coherence condition by image processing and calibrating the optical gas distribution by the gravimetrical gas saturation, it was found that a pulse-like function yields the best fit for the lateral gas saturation profile. This strange behavior of a relatively sharp saturation transition is in contradiction to the widely anticipated picture of a smooth Gaussian-like transition, which is obtained by the continuum approach. This transition is caused by the channelized flow structure, and it turns out that only a narrow range of capillary pressure is realized by the system, whereas the continuum approach assumes that within the representative elementary volume the whole spectrum of capillary pressures can be realized. It was found that the stochastical hypothesis proposed by Selker et al. (2007) that bridges pore scale and continuum scale is supported by the experiments. In order to study channelized gas flow on the pore scale, a variational treatment, which minimizes the free energy of an undulating capillary, was carried out. On the basis of thermodynamical arguments the geometric form of a microcapillary, macrochannel formation and a length-scale-dependent transition in gas flow pattern from coherent to incoherent flow are discussed.
The representative measurement of gas concentration and fluxes in heterogeneous soils is one of the current challenges when analyzing the interactions of biogeochemical processes in soils and global change. Furthermore, recent research projects on CO2-sequestration have an urgent need of CO2-monitoring networks. Therefore, a measurement method based on selective permeation of gases through tubular membranes has been developed. Combining the specific permeation rates of gas components for a membrane and Dalton's principle, the gas concentration (or partial pressure) can be determined by the measurement of physical quantities (pressure or volume) only. Due to the comparatively small permeation constants of membranes, the influence of the sensor on its surrounding area can be neglected. The design of the sensor membranes can be adapted to the spatial scale from the bench scale to the field scale. The sensitive area for the measurement can be optimized to obtain representative results. Furthermore, a continuous time-averaged measurement is possible where the time for averaging is simply controlled by the wall-thickness of the membrane used. The measuring method is demonstrated for continuous monitoring of O2 and CO2 inside of a sand filled Lysimeter. Using three sensor planes inside the sand pack, which were installed normal to the gas flow direction and a reference measurement system, we demonstrate the accuracy of the gas-detection for different flux-based boundary conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.