The aerosolization process of fungal propagules of three species (Aspergillus versicolor, Penicillium melinii, and Cladosporium cladosporioides) was studied by using a newly designed and constructed aerosolization chamber. We discovered that fungal fragments are aerosolized simultaneously with spores from contaminated agar and ceiling tile surfaces. Concentration measurements with an optical particle counter showed that the fragments are released in higher numbers (up to 320 times) than the spores. The release of fungal propagules varied depending on the fungal species, the air velocity above the contaminated surface, and the texture and vibration of the contaminated material. In contrast to spores, the release of fragments from smooth surfaces was not affected by air velocity, indicating a different release mechanism. Correlation analysis showed that the number of released fragments cannot be predicted on the basis of the number of spores. Enzyme-linked immunosorbent assays with monoclonal antibodies produced against Aspergillus and Penicillium fungal species showed that fragments and spores share common antigens, which not only confirmed the fungal origin of the fragments but also established their potential biological relevance. The considerable immunological reactivity, the high number, and the small particle size of the fungal fragments may contribute to human health effects that have been detected in buildings with mold problems but had no scientific explanation until now. This study suggests that future fungal spore investigations in buildings with mold problems should include the quantitation of fungal fragments.Water damage in buildings is common and is often associated with mold problems. In North America, cross-sectional questionnaire studies have found that 27 to 36% of homes have mold problems (9, 51). Studies that included indoor air quality measurements have shown even higher numbers, from 42 to 56% (8, 11). In Europe, the prevalence of damp and moldy homes has been reported to be 17 to 46% for Great Britain (5,23,34,42), 15 to 18% for The Netherlands (3, 55,56), and 15% for Finland (41). Alarmingly, signs of present or previous moisture-related defects were found in 80% of randomly selected private homes investigated by civil engineers trained to recognize the signs of water leaks or condensation (37).Increased prevalence of water-damaged buildings and subsequent fungal contamination may contribute to the noted increase in allergic diseases. Fungi can affect human health in a variety of ways. Possible reactions generally fall into one of three groups: allergic reactions (sensitization and immune responses, i.e., asthma, allergic rhinitis, or hypersensitivity pneumonitis), infections (growth of the fungus in or on the body, e.g., aspergillosis), and toxic responses (24,30,45). The toxic reactions are mainly connected with the secondary fungal metabolites, i.e., mycotoxins, but the role of cell wall components, such as -(133)-D-glucans, has also been reported (4,26,29,45,47,50). In addition, expos...
Exposure to fungi, particularly in water damaged indoor environments, has been thought to exacerbate a number of adverse health effects, ranging from subjective symptoms such as fatigue, cognitive difficulties or memory loss to more definable diseases such as allergy, asthma and hypersensitivity pneumonitis. Understanding the role of fungal exposure in these environments has been limited by methodological difficulties in enumerating and identifying various fungal components in environmental samples. Consequently, data on personal exposure and sensitization to fungal allergens are mainly based on the assessment of a few select and easily identifiable species. The contribution of other airborne spores, hyphae and fungal fragments to exposure and allergic sensitization are poorly characterized. There is increased interest in the role of aerosolized fungal fragments following reports that the combination of hyphal fragments and spore counts improved the association with asthma severity. These fragments are particles derived from any intracellular or extracellular fungal structure and are categorized as either submicron particles or larger fungal fragments. In vitro studies have shown that submicron particles of several fungal species are aerosolized in much higher concentrations (300-500 times) than spores, and that respiratory deposition models suggest that such fragments of Stachybotrys chartarum may be deposited in 230-250 fold higher numbers than spores. The practical implications of these models are yet to be clarified for human exposure assessments and clinical disease. We have developed innovative immunodetection techniques to determine the extent to which larger fungal fragments, including hyphae and fractured conidia, function as aeroallergen sources. These techniques were based on the Halogen Immunoassay (HIA), an immunostaining technique that detects antigens associated with individual airborne particles >1 microm, with human serum immunoglobulin E (IgE). Our studies demonstrated that the numbers of total airborne hyphae were often significantly higher in concentration than conidia of individual allergenic genera. Approximately 25% of all hyphal fragments expressed detectable allergen and the resultant localization of IgE immunostaining was heterogeneous among the hyphae. Furthermore, conidia of ten genera that were previously uncharacterized could be identified as sources of allergens. These findings highlight the contribution of larger fungal fragments as aeroallergen sources and present a new paradigm of fungal exposure. Direct evidence of the associations between fungal fragments and building-related disease is lacking and in order to gain a better understanding, it will be necessary to develop diagnostic reagents and detection methods, particularly for submicron particles. Assays using monoclonal antibodies enable the measurement of individual antigens but interpretation can be confounded by cross-reactivity between fungal species. The recent development of species-specific monoclonal antibodies, used...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.