Melatonin, the secretory product of the pineal gland, is known to be neuroprotective in cerebral ischemia, which is so far mostly attributed to its antioxidant properties. Here we show that melatonin directly inhibits the mitochondrial permeability transition pore (mtPTP). mtPTP contributes to the pathology of ischemia by releasing calcium and cytochrome c (cyt c) from mitochondria. Consistently, NMDA-induced calcium rises were diminished by melatonin in cultured mouse striatal neurons, similar to the pattern seen with cyclosporine A (CsA). When the mouse striatal neurons were subjected to oxygen-glucose deprivation (OGD), melatonin strongly prevented the OGD-induced loss of the mitochondrial membrane potential. To assess the direct effect of melatonin on the mtPTP activity at the single channel level, recordings from the inner mitochondrial membrane were obtained by a patch-clamp approach using rat liver mitoplasts. Melatonin strongly inhibited mtPTP currents in a dose-dependent manner with an IC50 of 0.8 microM. If melatonin is an inhibitor of the mtPTP, it should prevent mitochondrial cyt c release as seen in stroke models. Rats underwent middle cerebral artery occlusion (MCAO) for 2 h followed by reperfusion. Melatonin (10 mg/kg ip) or vehicle was given at the time of occlusion and at the time of reperfusion. Indeed, infarct area in the brain sections of melatonin-treated animals displayed a considerably decreased cyt c release along with less activation of caspase-3 and apoptotic DNA fragmentation. Melatonin treatment diminished the loss of neurons and decreased the infarct volume as compared with untreated MCAO rats. Our findings suggest that the direct inhibition of the mtPTP by melatonin may essentially contribute to its anti-apoptotic effects in transient brain ischemia.
Potassium channels have been found in the inner mitochondrial membranes of various cells. These channels regulate the mitochondrial membrane potential, the matrix volume and respiration. The activation of these channels is cytoprotective. In our study, the single-channel activity of a large-conductance Ca2+-regulated potassium channel (mitoBKCa channel) was measured by patch-clamping mitoplasts isolated from the human astrocytoma (glioblastoma) U-87 MG cell line. A potassium-selective current was recorded with a mean conductance of 290 pS in symmetrical 150 mM KCl solution. The channel was activated by Ca2+ at micromolar concentrations and by the potassium channel opener NS1619. The channel was inhibited by paxilline and iberiotoxin, known inhibitors of BKCa channels. Western blot analysis, immuno-gold electron microscopy, high-resolution immunofluorescence assays and polymerase chain reaction demonstrated the presence of the BKCa channel β4 subunit in the inner mitochondrial membrane of the human astrocytoma cells. We showed that substrates of the respiratory chain, such as NADH, succinate, and glutamate/malate, decrease the activity of the channel at positive voltages. This effect was abolished by rotenone, antimycin and cyanide, inhibitors of the respiratory chain. The putative interaction of the β4 subunit of mitoBKCa with cytochrome c oxidase was demonstrated using blue native electrophoresis. Our findings indicate possible structural and functional coupling of the mitoBKCa channel with the mitochondrial respiratory chain in human astrocytoma U-87 MG cells.
NADPH facilitates glucose-stimulated insulin secretion (GSIS) in pancreatic islets (PIs) of β-cells through an as yet unknown mechanism. We found NADPH oxidase isoform 4 (NOX4) to be the main producer of cytosolic H2O2, which is essential for GSIS; an increase in ATP alone was insufficient for GSIS. The fast GSIS phase was absent from PIs from NOX4-null, β-cell–specific knockout mice (NOX4βKO) (though not from NOX2 knockout mice) and from NOX4-silenced or catalase-overexpressing INS-1E cells. Lentiviral NOX4 overexpression or H2O2 rescued GSIS in PIs from NOX4βKO mice. NOX4 silencing suppressed Ca2+ oscillations, and the patch-clamped KATP channel opened more frequently when glucose was high. Mitochondrial H2O2, decreasing upon GSIS, provided alternative redox signaling when 2-oxo-isocaproate or fatty acid oxidation formed superoxides through electron-transfer flavoprotein:Q-oxidoreductase. Unlike GSIS, such insulin secretion was blocked with mitochondrial antioxidant SkQ1. Both NOX4 knockout and NOX4βKO mice exhibited impaired glucose tolerance and peripheral insulin resistance. Thus, the redox signaling previously suggested to cause β-cells to self-check hypothetically induces insulin resistance when it is absent. In conclusion, increases in ATP and H2O2 constitute an essential signal that switches on insulin exocytosis for glucose and branched-chain oxoacids as secretagogues (it does so partially for fatty acids). Redox signaling could be impaired by cytosolic antioxidants; hence, those targeting mitochondria should be preferred for clinical applications to treat (pre)diabetes at any stage.
Hypoxia can cause severe damage to cells by initiating signaling cascades that lead to cell death. A cellular oxygen sensor, other than the respiratory chain, might exist in sensitive components of these signaling cascades. Recently, we found evidence that mitochondrial ion channels are sensitive to low levels of oxygen. We therefore studied the effects of hypoxia on the mitochondrial BK-channel (mtBK), on the mitochondrial permeability transition pore (PTP), and on their possible interaction. Using single-channel patch-clamp techniques we found that hypoxia inhibited the PTP but substantially increased the mtBK activity of mitoplasts from rat liver and astrocytes. Experiments measuring the mitochondrial membrane potential of intact rat brain mitochondria (using the fluorescence dye safranine O) during hypoxia exhibited an increased Ca2+-retention capacity implying an impaired opening of the PTP. We also found a reduced Ca2+-retention capacity with 100 nM iberiotoxin, a selective inhibitor of BK-channels. We therefore conclude that there is interaction between the mtBK and the PTP in a way that an open mtBK keeps the PTP closed. Thus, the response of mitochondrial ion channels to hypoxia could be interpreted as anti-apoptotic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.