Synaptojanin is a nerve terminal protein of relative molecular mass 145,000 which appears to participate with dynamin in synaptic vesicle recycling. The central region of synaptojanin defines it as a member of the inositol-5-phosphatase family, which includes the product of the gene that is defective in the oculocerebrorenal syndrome of Lowe. Synaptojanin has 5-phosphatase activity and its amino-terminal domain is homologous with the yeast protein Sac1 (Rsd1), which is genetically implicated in phospholipid metabolism and in the function of the actin cytoskeleton. The carboxy terminus, which is of different lengths in adult and developing neurons owing to the alternative use of two termination sites, is proline-rich, consistent with the reported interaction of synaptojanin with the SH3 domains of Grb2 (refs 1, 2). Synaptojanin is the only other major brain protein besides dynamin that binds the SH3 domain of amphiphysin, a presynaptic protein with a putative function in endocytosis. Our results suggest a link between phosphoinositide metabolism and synaptic vesicle recycling.
The proline-rich COOH-terminal region of dynamin binds various Src homology 3 (SH3) domain-containing proteins, but the physiological role of these interactions is unknown. In living nerve terminals, the function of the interaction with SH3 domains was examined. Amphiphysin contains an SH3 domain and is a major dynamin binding partner at the synapse. Microinjection of amphiphysin's SH3 domain or of a dynamin peptide containing the SH3 binding site inhibited synaptic vesicle endocytosis at the stage of invaginated clathrin-coated pits, which resulted in an activity-dependent distortion of the synaptic architecture and a depression of transmitter release. These findings demonstrate that SH3-mediated interactions are required for dynamin function and support an essential role of clathrin-mediated endocytosis in synaptic vesicle recycling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.