The impact of the modification of silicone rubber with barium titanate particles on the permittivity and hence on the performance of dielectric elastomer actuators has been investigated. Barium titanate powders with different particle sizes in the micrometer and nanometer range were used in this study. The mechanical properties of the composite materials in terms of the Young's modulus in tension and compression load as well as the viscoelastic behavior in shear load were experimentally determined. Additionally, the electric properties like permittivity, specific conductivity and electric breakdown field strength were evaluated. Model film actuators with the modified silicone material were prepared and their actuation strain was measured. With a concentration of 20 vol.% barium titanate particles, an enhancement of the permittivity of 140 % and an increase of the actuation strain of about 100 % with respect to the unmodified material could be achieved. Furthermore, firs t multilayer actuators were manufactured with an automatic spin coating process and their permittivity and strain were measured. The results of these investigations are in good agreement with the data of the experiments with single layer dielectric elastomer films
Dielectric elastomer actuators (DEA) based on an organically modified silicone elastomer are introduced. The elastomer carries fluorinated sidegroups in the polysiloxane molecular chain and is synthesized from precursors which all are fluorinated. A fluorinated silicone oil is added in consecutive concentration steps as a softening agent. The electric properties of the modified silicone elastomers in terms of the permittivity, specific conductivity and electric breakdown field strength were investigated and compared with those of the unmodified silicone elastomer as the reference material. Moreover, the mechanical characteristics like Young's modulus in tensile and compressional load as well as the storage and loss modulus in shear load were studied. The permittivity of the modified silicone is enhanced by 80 % compared to the unmodified silicone elastomer. No strong alteration of the specific conductivity occurs. The electric breakdown field strength is comparable to t hat of the reference material. Simultaneously, the Young's modulus is decreased by the softening agent. Actuation measurements on model actuators show, that the actuation strain of the best materials surmounts that of the unmodified reference material by a factor of up to 5. The modified silicone elastomer materials can also be used for dielectric elastomer sensors and generators
Beside the characteristics of the elastomer material itself, the performance of dielectric elastomers in actuator, sensor as well as generator applications depends also on the properties of the electrode material. Various electrode materials based on metallic particles dispersed in a silicone matrix were manufactured and investigated. Anisotropic particles such as silver-coated copper flakes and silver-coated glass flakes were used for the preparation of the electrodes. The concentration of the metallic particles and the thickness of the electrode layers were varied. Specific conductivities derived from resistance measurements reached about 100 S/cm and surmount those of the reference materials based on graphite and carbon black by up to three orders of magnitude. The high conductivities of the new electrode materials can be maintained even at very large stretch deformations up to 200 %
The availability of stretchable conductive materials is a key requirement for the development of soft and wearable electronics. Although there are many promising materials, the characterization of these materials under realistic conditions is complex and a standardized and reliable procedure has not been etablished yet. We therefore introduce a comprehensive protocol for the practice‐oriented dynamic electro‐mechanical analysis of elastomer‐particle composites. In addition to strain dependence (0–100% strain) and fatigue strength (10,000 cycles), this protocol aims in particular to clarify the influence of strain rate (0–100% s−1) on conductivity. Samples with the commonly used filler representatives carbon black and silver flakes with 20 vol% each were prepared and investigated. Silicone elastomers of different stiffness were used as matrix in order to determine its influence. We found that while the conductivity of the carbon black composites of about 1 × 102 S m−1 proved to be fatigue resistant and largely independent of the strain rate, the silver flake composites lost their initially higher conductivity of 1 × 104 S m−1 at high strain rates and increasing numbers of cycles. In addition, the use of a softer silicone matrix improved the performance of both particle composites, which was also demonstrated on an exemplary wearable electronic device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.