This article presents an overview of optical wireless (OW) communication systems that operate both in the short-(personal and indoor systems) and the long-range (outdoor and hybrid) regimes. Each of these areas is discussed in terms of (a) key requirements, (b) their application framework, (c) major impairments and applicable mitigation techniques, and (d) current and/or future trends. Personal communication systems are discussed within the context of point-to-point ultra-high speed data transfer. The most relevant application framework and related standards are presented, including the next generation Giga-IR standard that extends personal communication speeds to over 1 Gb/s. As far as indoor systems are concerned, emphasis is given on modeling the dispersive nature of indoor OW channels, on the limitations that dispersion imposes on user mobility and dispersion mitigation techniques. Visible light communication systems, which provide both illumination and communication over visible or hybrid visible/ infrared LEDs, are presented as the most important representative of future indoor OW systems. The discussion on outdoor systems focuses on the impact of atmospheric effects on the optical channel and associated mitigation techniques that extend the realizable link lengths and transfer rates. Currently, outdoor OW is commercially available at 10 Gb/s Ethernet speeds for Metro networks and Local-Area-Network interconnections and speeds are expected to increase as faster and more reliable optical components become available. This article concludes with hybrid optical wireless/radio-frequency (OW/RF) systems that employ an additional RF link to improve the overall system reliability. Emphasis is given on cooperation techniques between the reliable RF subsystem and the broadband OW system.
A clear understanding of a model is important for its appropriate use. In this article, eleven watershed scale hydrologic and nonpoint-source pollution models are reviewed: AGNPS, AnnAGNPS, ANSWERS, CASC2D, DWSM, HSPF, KINEROS, MIKE SHE, PRMS, and SWAT. AnnAGNPS, HSPF, and SWAT are continuous simulation models useful for analyzing long-term effects of hydrological changes and watershed management practices, especially agricultural practices. AGNPS, ANSWERS, DWSM, and KINEROS are single rainfall event models useful for analyzing severe actual or design single-event storms and evaluating watershed management practices, especially structural practices. CASC2D, MIKE SHE, and PRMS have both long-term and single-event simulation capabilities. Mathematical bases, the most important and critical elements of these mathematical models, were identified and compiled. In this article, a comprehensive summary of the compilation is presented in tabular form. The flow-governing equations and their solution methods used in each of the eleven models are discussed. The compilation of the mathematical bases of these models would be useful to determine the problems, situations, or conditions for which the models are most suitable, the accuracies and uncertainties expected, their full potential uses and limitations, and directions for their enhancements or new developments. AGNPS, AnnAGNPS, DWSM, HSPF, MIKE SHE, and SWAT were found to have all the three major components (hydrology, sediment, and chemical) applicable to watershed-scale catchments. SWAT is a promising model for continuous simulations in predominantly agricultural watersheds, and HSPF is promising for mixed agricultural and urban watersheds. Among the single-event models, DWSM provides a balance between the simple but approximate and the computationally intensive models and, therefore, is a promising storm event model for agricultural watersheds.
An analytical solution to the kinematic wave approximation for unsteady flow routing is presented. The model allows time‐dependent lateral inflow with piecewise spatial uniformity and can be applied to complex kinematic cascades. Kinematic shocks are considered as manifestations of higher‐order effects such as rnonoclinal flood waves, bores, etc. Within the context of kinematic approximation therefore we retain their dynamic effects by routing the discontinuities as they appear. Certain simplifying assumptions are made which permit closed form solutions and an efficient numerical algorithm, based on the method of characteristics, is employed. The resulting model, called an approximate shock‐fitting scheme, preserves the effect of the shocks without the usual computational complications and compares favorably with an implicit finite difference solution. The efficiency and accuracy of the new method are illustrated by computing a variety of unsteady flows, ranging from simple cascades to complex natural watersheds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.