Bioethanol production from lignocellulosic biomass has received increasing attention over the past decade. Many attempts have been made to reduce the cost of bioethanol production by combining the separate steps of the process into a single-step process known as consolidated bioprocessing. This requires identification of organisms that can efficiently decompose lignocellulose to simple sugars and ferment the pentose and hexose sugars liberated to ethanol. There have been many attempts in engineering laboratory strains by adding new genes or modifying genes to expand the capacity of an industrial microorganism. There has been less attention in improving bioethanol-related processes utilizing natural variation existing in the natural ecotypes. In this study, we sought to identify genomic loci contributing to variation in saccharification of cellulose and fermentation of glucose in the fermenting cellulolytic fungus Neurospora crassa through quantitative trait loci (QTL) analysis. We identified one major QTL contributing to fermentation of glucose and multiple putative QTL's underlying saccharification. Understanding the natural variation of the major QTL gene would provide new insights in developing industrial microbes for bioethanol production.
Bioethanol production from lignocellulosic biomass has received increasing attention over the past decade. Many attempts have been made to reduce the cost of bioethanol production by combining the separate steps of the process into a single-step process known as consolidated bioprocessing. This requires identification of organisms that can efficiently decompose lignocellulose to simple sugars and ferment the pentose and hexose sugars liberated to ethanol. There have been many attempts in engineering laboratory strains by adding new genes or modifying genes to expand the capacity of an industrial microorganism. There has been less attention in improving bioethanol-related processes utilizing natural variation existing in the natural ecotypes. In this study, we sought to identify genomic loci contributing to variation in saccharification of cellulose and fermentation of glucose in the fermenting cellulolytic fungus Neurospora crassa through quantitative trait loci (QTL) analysis. We identified one major QTL contributing to fermentation of glucose and multiple putative QTL’s underlying saccharification. Understanding the natural variation of the major QTL gene would provide new insights in developing industrial microbes for bioethanol production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.