In male song sparrows (Melospiza melodia), territorial challenges during the breeding season can rapidly increase circulating levels of testosterone (T). During the non-breeding season, male song sparrows are highly aggressive, but the gonads are regressed and plasma T levels are non-detectable and unaffected by territorial challenges. The pro-hormone dehydroepiandrosterone (DHEA) is elevated in song sparrow plasma and brain during the non-breeding season and may be locally converted to sex steroids in the brain to regulate aggression. The enzyme 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase (3β-HSD) converts DHEA to androstenedione (AE) using the cofactor NAD+, and this is a critical rate-limiting step. We predicted that brain 3β-HSD activity varies seasonally and is rapidly modulated by aggressive challenges. In the first study, brain 3β-HSD activity was highest in the non-breeding season in specific regions. In the second study, a simulated territorial challenge rapidly increased aggressive behavior in non-breeding song sparrows. Brain 3β-HSD activity, when measured without exogenous NAD+, increased by ∼250 to 500% in telencephalic regions of challenged subjects. When brain 3β-HSD activity was measured with exogenous NAD+, these effects of territorial challenges were not observed. These data suggest that territorial challenges rapidly increase endogenous NAD+levels or increase 3β-HSD activity specifically within a NAD-rich subcellular compartment. Together, these two studies suggest a shift from systemic to local sex steroid signaling in the non-breeding season. Local steroid signaling produces high spatial and temporal specificity of steroid signals and avoids the costs of high systemic T levels during the non-breeding season.
Stress has well-known effects on adrenal glucocorticoid secretion, and chronic elevation of glucocorticoids can have detrimental effects on the brain. Dehydroepiandrosterone (DHEA), an androgen precursor synthesized in the adrenal glands or the brain itself, has anti-glucocorticoid properties, but little is known about the role of DHEA in the stress response, particularly in the brain. Here, we measured the effects of acute restraint on circulating corticosterone (CORT) and DHEA levels in wild song sparrows. Blood was collected from either the brachial or jugular vein. In songbirds, jugular plasma is enriched with neurally synthesized steroids, and therefore, jugular plasma is an indirect index of the neural steroidal milieu. Subjects were sampled during four times of year: breeding, molt, early nonbreeding, and mid-nonbreeding. Baseline CORT and DHEA levels showed similar seasonal changes; both steroids were elevated during the breeding season. Baseline CORT and DHEA levels were similar in jugular and brachial plasma. Acute stress had robust effects on CORT and DHEA that were season specific and vein specific. For CORT, during the molt, stress increased jugular CORT more than brachial CORT. For DHEA, during the breeding season, stress decreased jugular DHEA but not brachial DHEA. During the molt, stress increased jugular DHEA but not brachial DHEA. Acute stress did not affect brachial DHEA. These data suggest that acute stress specifically affects the balance between DHEA synthesis and metabolism in the brain. Furthermore, these results suggest that CORT and DHEA are locally synthesized in the brain during molt, when systemic levels of CORT and DHEA are low.
In the songbird brain, dehydroepiandrosterone (DHEA) is metabolized to the active and aromatizable androgen androstenedione (AE) by 3β‐hydroxysteroid dehydrogenase/Δ5‐Δ4 isomerase (3β‐HSD). Thus, brain 3β‐HSD plays a key role in regulating the steroidal milieu of the nervous system. Previous studies have shown that stress rapidly regulates brain 3β‐HSD activity in a sex‐specific manner. To elucidate endocrine regulation of brain 3β‐HSD, we asked whether 17β‐estradiol (E2) regulates DHEA metabolism in adult zebra finch (Taeniopygia guttata) and whether there are sex‐specific effects. Brain tissue was homogenized and centrifuged to obtain supernatant lacking whole cells and cell nuclei. Supernatant was incubated with [3H]DHEA and radioinert E2in vitro. Within only 10 min, E2 significantly reduced 3β‐HSD activity in both male and female brain. Interestingly, the rapid effects of E2 were more pronounced in females than males. These are the first data to show a rapid effect of estrogens on the songbird brain and suggest that rapid estrogen effects differ between male and female brains.
While systemic steroid hormones are known to regulate reproductive behaviour, the actual mechanisms of steroidal regulation remain largely unknown. Steroidogenic enzyme activity can rapidly modulate social behaviour by influencing neurosteroid production. In fish, the enzyme 11b-hydroxysteroid dehydrogenase (11b-HSD) synthesizes 11-ketotestosterone (KT, a potent teleost androgen) and deactivates cortisol (the primary teleost glucocorticoid), and both of these steroid hormones can regulate behaviour. Here, we investigated the role of neurosteroidogenesis in regulating parenting in a haremic bidirectionally hermaphroditic fish, Lythrypnus dalli, where males provide all requisite parental care. Using an in vitro assay, we found that an 11b-HSD inhibitor, carbenoxolone (CBX), reduced brain and testicular KT synthesis by 90% or more. We modulated neurosteroid levels in parenting males via intracerebroventricular injection of CBX. Within only 20 min, CBX transiently eliminated parenting behaviour, but not other social behaviour, suggesting an enzymatic mechanism for rapid neurosteroidal regulation of parenting. Consistent with our proposed mechanism, elevating KT levels rescued parenting when paired with CBX, while cortisol alone did not affect parenting. Females paired with the experimental males opportunistically consumed unattended eggs, which reduced male reproductive success by 15%, but some females also exhibited parenting behaviour and these females had elevated brain KT. Brain KT levels appear to regulate the expression of parenting behaviour as a result of changes in neural 11b-HSD activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.